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Abstract

The southeastern Piedmont of the USAwas severely gullied during the early 20th century. A thick canopy established by reforestation in
many areas now inhibits the identification or mapping of gullies by aerial photography or other conventional remote sensing methods. An
Airborne Laser-Scanning (ALS or LiDAR) mapping mission flown for the U.S. Forest Service in April, 2004 acquired bare-Earth
topographic data. This paper tests the ability of the ALS topographic data to identify headwater channels and gullies for two branching gully
systems in forested areas and to extract gully morphologic information. Comparisons are made with field traverses using differential GPS and
reference cross sections measured by leveling surveys. At the gully network scale, LiDAR data provide accurate maps – the best available –
with robust detection of small gullies except where they are narrow or parallel and closely spaced. Errors in mapping channel location and
network topological connectivity under forest canopy increase with attempts to identify smaller features such as large rills. The ability of
LiDAR data to map gullies and channels in a forested landscape should improve channel-network maps and topological models. At the gully
reach scale, attempts to use LiDAR data to extract gully cross-section morphologic information under forest canopy were less successful due
to systematic underestimation of gully depths and overestimation of gully top widths. Limited morphologic accuracy of the data set at this
scale may be due to low bare-Earth point densities, shadowing of gully bottoms, and filtering of topographic discontinuities during post-
processing. The ALS data used in this study are not suitable for detailed morphometric analysis or subtle change detection to monitor gullies
or develop sediment budgets. Data collection may be improved by orienting flights over gullies and with increased point densities through
improved scanner technology or better filtering and software capabilities to differentiate between vegetation and ground surfaces.
© 2006 Published by Elsevier B.V.
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1. Introduction

1.1. Importance of ALS mapping

Large gully systems have received much attention from
researchers using modern geospatial analysis, especially in
the Iberian Peninsula and Africa (Zinck et al., 2001;
Martinez-Casanovas, 2003; Martinez-Casanovas et al.,
2004). Aerial photography has long been used in gully
studies and commercial satellite data have recently become
available with the spatial resolutions needed to depict gully
development. These methods are less effective in areas
covered by heavy foliage, however, especially where abrupt
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and frequent surface changes are present. Even in flat areas
such as floodplains, the fine details of channel planform are
poorly mapped on contour maps of areas under forest
canopies. Under closed canopies, channels mapped by
interpretations of aerial photographs are often depicted as
relatively straight, in conflict with actual channel form and
location. A means of generating topographic data in forested
areas is needed.

LIght Detection And Ranging (LiDAR), Airborne Laser
Scanning (ALS), or Airborne LiDAR Swath Mapping
(ALSM) all refer to an active remote sensing technology
that can be used to develop high-resolution topographic data
over large areas. LiDAR is the most general term and refers
to any use of a laser scanner— including oblique land-based
systems. ALS and ALSM refer to systems mounted on
aircraft and flown over terrain to be mapped. Henceforth, this
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paper refers to LiDAR as used for ALS or ALSM. If
accurate, LiDAR-derived maps could help identify channel
and gully networks, and would improve characterizations of
drainage density and fluvial connectivity. These improved
capabilities would facilitate topographic, hydrologic, and
ecologic modeling.

In addition to improved map precision, accurate LiDAR-
derived Digital Elevation Models (DEMs) could be utilized
to extract local gully morphologic information for parame-
terizing runoff, erosion, and sediment transport models. The
ability to estimate erosion and sedimentation volumes based
on repeated high-resolution topographic data acquisition and
standard change-detection procedures would also allow the
monitoring of gully morphological changes (Betts and
DeRose, 1999). Volumetric assessments of geomorphic
change made by differencing sequential DEMs can be used
to compute sediment budgets and identify specific sources
and sinks of sediment and nutrients (Thoma et al., 2005).
Standard DEMs generally lack the spatial and temporal
resolution to perform change detection at the local gully
scale, but if accurate, ALS data could present the opportunity
to monitor hill-slope systems for on-going geomorphic
change as is now being done on beaches (Shrestha et al.,
2005). LiDAR-generated DEMs would also improve base
map information such as slope and drainage density. Digital
elevation models (DEMs) have been used to map the
development of large gully systems and monitor sidewall
erosion or other changes (Betts and DeRose, 1999; Martinez-
Casanovas et al., 2004). Creation of accurate, high-
resolution DEMs under forest canopy, however, has not
been feasible until the recent development of ALS.

This study examines the ability of ALS topographic data
to identify, map, and measure the morphology of two gully
systems under thick forest canopy in the Piedmont region of
South Carolina, USA. Two capabilities of ALS data are
assessed: (1) detection and mapping of gully systems under
forest canopy, and (2) accuracy of local gully morphological
measurements derived from the topographic data. The ability
of ALS data to develop accurate maps of gully networks is
tested by comparing LiDAR-generated maps with observa-
tions in the field. They are also compared with channel
networks derived from conventional blue-line and contour-
crenulation methods from U.S. Geological Survey (USGS)
topographic maps (Strahler, 1957). A second set of tests
compares gully morphometric parameters derived from
LiDAR-generated DEMs with ground-based topographic
surveys of gully cross sections.

1.2. Mapping headwaters and gullies

Accurate identification and mapping of channel head-
waters and low-order stream channels is key to physically
based characterization of hydrologic processes in small
catchments (Tribe, 1990; Wharton, 1994). Headwater
streams often account for more than 75% of the length of
channels in a basin (Leopold et al., 1964). Moreover, flows
in small channels are often closely linked to nutrient
dynamics, macroinvertibrate habitat, and groundwater, so
they can be highly vulnerable aquatic ecosystems during dry
periods (Meyer and Wallace, 2001; Gomi et al., 2002).
Accurate maps of headwater streams are also needed for
network analysis to determine drainage densities, stream
orders, and stream magnitudes for hydrologic analyses
(Melville and Martz, 2004). Because headwaters may be
rapidly changed by gullying, a means of on-going monitor-
ing would be quite useful.

Unfortunately, the locations of most headwater streams
are not accurately known due to limited resolution of
existing maps (Heine et al., 2004). This gap in knowledge
extends to fundamental aspects of fluvial systems such as the
total length of channels in the United States (Somerville and
Pruitt, 2004). The ‘blue-line method’ of delineating channels
from maps consistently underestimates the total length of
headwater channels (Leopold, 1994). For example, channel
lengths derived from blue lines on 1:24,000 U.S. Geological
Survey (USGS) quadrangles in the Chattooga catchment of
the Blue Ridge Mountains underestimated the extent of
intermittent and ephemeral channels and covered only 21%
of the total channel length at the 1:24,000 map scale
(Hansen, 2001). Blue lines also depend on map scale as was
shown in a southern Appalachian Mountains study where the
length of channels produced by blue lines ranged from only
0.8 km of channels produced from a 1:500,000 scale map to
56 km from a 1:7200 scale map (Meyer and Wallace, 2001;
Somerville and Pruitt, 2004).

1.3. Generating DEMs and channel network maps for small
catchments

Topographic modeling techniques applied to DEMs have
become standard methods of mapping hydrologic para-
meters. DEMs can be used to extract channel networks,
drainage divides, flow paths, and topologic and morpho-
metric features of catchments that identify processes and
facilitate hydrologic modeling of runoff and sediment
(Naden, 1992; Beven and Moore, 1993; Garbrecht and
Martz, 1993). DEMs can be used to analyze stream order
(Lanfear, 1990), drainage patterns (Hadipriono et al., 1990),
Hortonian laws of drainage composition and fractal
properties of channel networks (Helmlinger et al., 1993;
Rodriguez-Iturbe and Rinaldo, 1997), and soil distributions
(Klingebiel et al., 1987). The accuracy of derivative products
depends on the accuracy and precision of the topographic
data used and validation of data to remove erroneous values.
The coarse resolution of conventional DEMs (10×10 m and
30×30 m in the USA) has limited mapping of headwaters
and the parameterization of distributed models of small
catchments or hill slopes. Verification of headwater locations
on channel-network maps is needed because the critical
drainage area necessary to initiate channel formation varies
between catchments in each region with differences in
geology, soils, slopes, vegetation, and land-use histories. To



Fig. 2. Study area in the upper Piedmont of South Carolina, USA.
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generate accurate maps of small, headwater channels, high-
resolution topographic data are needed.

Several remote sensing methods using traditional classi-
fication approaches have been used to delineate large streams
and to identify small channels in arid and semi-arid regions
where vegetation is sparse (Gardner et al., 1989). The low
reflectivity of near-infrared (NIR) radiation by water often
allows identification of large water bodies, moist flood-
plains, wetland soils, and hydrophytic vegetation. The
delineation of small channels in vegetated areas has been
problematic, however, for digital image classifications and
visual interpretations (Wharton, 1994). Similarly, mapping
topographic relief under vegetation with aerial photography
or satellite imagery can be difficult and inaccurate.
Conventional photogrammetric methods lack the ability to
penetrate forest canopy. Thus, existing topographic maps of
forested areas generally fail to identify geomorphic features
at the scale of narrow entrenched channels and gullies
(Fig. 1). This paper examines the ability of ALS to produce
accurate topographic maps of gully systems under forest
canopy in the southeast USA.

1.4. Physiography and erosion in the South Carolina
Piedmont, USA

The study area is in the Sumter National Forest (SNF) of
the South Carolina Piedmont in the southeastern USA
(Fig. 2). The southern Piedmont has a gentle regional slope
to the southeast from the Blue Ridge escarpment which lies
to the west. The beveled Piedmont surface was not glaciated
during the Pleistocene and is dissected with moderate to
steep valley side slopes developed in metamorphic or other
Fig. 1. LiDAR-derived 0.6-m contours (thin lines) superimposed on blow-up
of standard USGS 1:24,000 Digital Raster Graphics (DRG) quad 3-m
contours (thick blocky lines). Macedonia gully system.
crystalline rocks. Thick forests are often rooted in deeply
weathered saprolite that can reach 20 m in depth. To the
north in Virginia, similar deep saprolite was described in
detail by Pavich (1986) who concluded from an analysis of
cosmogenic radionuclides that the weathering front at the
base of the saprolite is lowering at a rate that is in equilibrium
with landscape down-wearing. He noted that this long-term
equilibrium explains the beveled southeast-sloping form of
the Piedmont rather than the fluvial planation and peneplain
formation postulated by the classic Davisian model. Bulk
densities of the metamorphic saprolite below the B horizon
are often less than one, but B horizons of the old residual
soils are often quite dense with pedogenic clay. This often
results in slow initial development of V-shaped gullies but
accelerated erosion with wide bases and overhanging root
mats once gullies breach the B horizon (Ireland et al., 1939).

The southern Piedmont experienced some of the most
severe erosion in the United States due to land clearance by
settlement during the nineteenth and early twentieth century.
Forest clearance for agriculture and careless tillage practices
laid hilly lands bare, and intense rainfalls initiated deep
gullying that rendered large areas of farmland useless
(Bennett, 1939; Ireland et al., 1939; Trimble, 1974). Many
areas of the SNF were logged, farmed repeatedly, and
abandoned when erosion and nutrient depletion became so
severe that the land could not support cotton or tobacco crops



Fig. 3. View to ENE up gully F (straight ahead) and gully E (to left) of Mace
gully system. Leaf-off condition in February, 2005. This lower position is
covered largely by young hardwoods while upper slope has more pine.
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(Trimble, 1974). Some abandoned lands were later cleared
and farmed again and generated a later phase of sheet and
gully erosion. Gullying developed not only from erosion of
agricultural land, but also where artificially concentrated
flows breached surface soils to expose the highly erodible
saprolite. Some lands were too steep to farm intensively, but
road access to remove timber or to provide transportation
routes delivered concentrated runoff to erodible soils.

An estimated 200 km2 of actively eroding gullies and
severely eroded soils initially dissected the Sumter National
Forest (SNF) when most of the land was acquired in the early
1930s. The average soil loss from the SNF has been
estimated at about 20 to 30 cm of soil, and sediment often
filled downstream valleys to depths up to 3 m (Trimble,
1974). By the 1930s, land destruction by gully erosion had
reached devastating proportions and soil conservation and
erosion research were being initiated. Several gullies in this
region were described in a seminal report about Spartanburg
County, the adjacent county to the north (Ireland et al.,
1939). Other examples of incised channel and gully research
were summarized by Schumm et al. (1984). Hoover (1949)
described the hydrological changes in soil properties from
the cultivation and erosion within the Piedmont including
reduced hydraulic conductivity from clogging of the
macropores with fine particles and increased runoff
response. Bottomland sedimentation in the Piedmont was
described by Happ (1945) and Happ et al. (1940).

Many gullies in the southern Piedmont stabilized
following the decline of agriculture from the 1940s through
1960s. This period was accompanied by reforestation and
successful implementation of soil conservation and rehabil-
itation measures including erosion-control structures and the
introduction of kudzu. Mitigation measures on the SNF
involved planting loblolly pine (Pinus taeda) across the
landscape and treating specific gullies (Hansen, 1991, 1995).
Efforts to stabilize gullies varied from internal measures to
control headcuts and grade changes such as rock check
dams, grade-control structures, and gully plugs. Measures to
fill and reshape gullies were used in some instances to help
restore the function and capability of the affected area and
adjacent lands, rather than just stabilizing the erosion and
gully expansion. The assumption is often made that active
gullying in the region is no longer a serious problem,
although recent gully studies are rare. Extremely small
gullies contribute runoff and sediment primarily in tropical
storm episodes as evidenced by the 48 tonnes delivered by a
0.1 ha discontinuous valley side gully over a 9.5-year period
(Hansen and Law, 2006). Some gullies for which the history
is known from early surveys (Ireland et al., 1939) have active
branches of a relatively young age (Kolomechuk, 2001).
Evidence of on-going gully activity – coupled with the
generation of non-point source pollution and threats to
transportation routes – calls for improved methods of gully
monitoring. This study was conducted on two gully systems
known as the Macedonia Lake (Mace) and the Compartment
32 (Comp32) gully systems (Fig. 3). Both systems are
located in Union County in the Sumter National Forest,
South Carolina and consist of branching networks of
multiple gullies.

2. Technical aspects of laser-scanned topographic data

2.1. ALS physical systems and applications

Laser scanners are optical–mechanical devices that
actively generate a pulsed laser beam (Wehr and Lohr,
1999). The pulsed scanning laser is coupled with a receiver,
an inertial measuring unit that compensates for aircraft
motions, a kinematic Global Positioning System (kGPS),
and at least one GPS base station to precisely locate the
aircraft (Jensen, 2000). The ranging unit of an ALS system
measures the time (ns) between emission of the laser beam
and receipt of return signals from reflected energy, and
converts this time to a distance. The data collected consist of
a dense three-dimensional cloud of irregularly spaced points
near the Earth's surface. Processing these data can produce a
map of bare-Earth postings (point elevations of the ground
surface with buildings and vegetative canopy removed) that
are used to generate high-resolution digital topographic
products such as triangulated integrated networks (TINs),
DEMs, and contour maps.

The potential of ALS technology is promising for many
applications as LiDAR data are becoming commercially
available from a variety of vendors, the price of data
acquisition and processing is dropping, data resolutions are
increasing, and multispectral scanners are under develop-
ment. ALS can quickly provide topographic maps that are
comparable to maps derived photogrammetrically but their
ability to penetrate vegetation canopy sets them apart (Balt-
savias, 1999a). ALS topographic data have been used to
characterize gullies and channels (Ritchie et al., 1994), ve-
getation cover (Moffiet et al., 2005), beach erosion (Shrestha
et al., 2005), landslides (McKean and Roering, 2004; Glenn



Table 1
LiDAR statistics

Bare Earth
points

Drainage
area

Point
density

Point
spacing

N ha Pts/ha Pts/m2

Mace 8939 7.01 1275 0.13 2.80
Comp32 11,972 12.54 955 0.10 3.24
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et al., 2006), tectonic scarps and glacial fluting (Haugerud et
al., 2003), channel-bank erosion (Thoma et al., 2005),
floodplain maps for hydraulic modeling (Pereira and
Wicherson, 1999), and roughness coefficients for hydraulic
modeling (Cobby et al., 2001). In spite of the many
successful uses of ALS, limitations of the data for
geomorphic purposes have been noted (Kraus and Pfeifer,
1998; Baltsavias, 1999a) and much work is needed to
evaluate the accuracy of ALS data for specific applications.

2.2. LiDAR topographic accuracies

Errors in the raw ALS data accumulate from multiple
systems including the GPS position, inertial measuring unit
orientation, and the laser rangefinder (Baltsavias, 1999b).
Outliers may result from scattered energy or complex
reflected pathways and are usually removed by pre-
screening. The scanners described here collect multiple
returns with the first return usually from the top of the
canopy and the last return possibly from the bare Earth.
Processing to distinguish bare-Earth points from other points
is an area of active research and is done by a combination of
automatic filtering and manual selection techniques (Petzold
et al., 1999; Axelsson, 1999).

Commercially advertised Root Mean Square Errors
(RMSE) of LiDAR bare-Earth data typically range from 1
to 2 m in the horizontal and 15 to 20 cm in the vertical
dimension, but these measurements are derived where errors
tend to be low; that is, on relatively flat areas without
discontinuities or thick vegetation. Precision tends to be less
near channels due to thick riparian vegetation and steep
banks and scarps. LiDAR RMSE in a high-relief area near
Green River, Utah was found to be 43 cm due to greater
importance of horizontal accuracy in areas of high
topographic variability (Bowen and Waltermire, 2002). In
the North Carolina Piedmont, the precision of LiDAR bare-
Earth elevations was tested with ground surveys under
several land covers and types of foliage (Hodgson et al.,
2003). The mean vertical LiDAR RMSE was found to be
93 cm; which was less error than IFSAR (X-band radar) data
or U.S. Geological Survey Level 1 and Level 2 DEMs.
Errors were least in low and high grass (33 and 37 cm),
intermediate under pine forest (46 cm), and highest in mixed
forest, deciduous forest, and scrub or shrubland (113, 122,
and 153 cm, respectively). Thus, vertical errors in bare-Earth
maps on the order of one meter are more realistic than RMSE
values commonly reported by LiDAR-acquisition compa-
nies. Level 2 DEMs produced average RMSE values of
163 cm while Level 1 DEMs had an average RMSE of
743 cm and are not suitable for topographic mapping. The
IFSAR data had the greatest RMSE (1067 cm) and
systematically overestimated elevations, presumably due to
the large size of the IFSAR return beam (Hodgson et al.,
2003).

The spatial resolution of laser scanner return data
constrain the accuracy of large-scale mapping. Spatial
resolutions can be measured by mean point densities or
mean point spacings. As the density of bare-Earth points
decreases, the ability of filters to distinguish between
vegetation or objects and the ground surface decreases,
although this source of error may be less than errors
associated with complex surfaces such as steep or vegetated
slopes and discontinuities (Sithole and Vosselman, 2004).

3. Methods and data

The ALS data used in this study were collected by Ayers
and Associates, Atlanta, Georgia, USA, by fixed-wing
aircraft in April, 2004 for the U.S. Forest Service (USFS),
Enoree Ranger District. The LiDAR point data were filtered
by Ayers and Associates to select bare-Earth estimates which
were provided to the USFS in ASCII text files as X, Y, Z
values with state plane coordinates. The postings were
converted to shapefiles and reprojected into UTM coordi-
nates using ArcGIS 9.0 and most of the raster processing was
done using Arc Hydro® within ArcGIS Spatial Analyst
(ESRI Corp.). Average bare-Earth point densities were 955
points/ha for the Comp32 system and 1275 points/ha for the
Mace System (Table 1). The average point spacing is on the
order of 3.0 m. Lower point densities for the Comp32 data
set may indicate a higher proportion of point removal by
filtering, possibly due to points eliminated from steep
sidewalls and kudzu-covered gully heads on that system.

The LiDAR bare-Earth point data were used to generate a
TIN for each of the two gully systems and three DEMs were
generated from the TINs. Two DEMs were generated for the
Mace system, at 2×2-m and 4×4-m grid-cell spacings, and a
4×4-m gridded DEMwas generated for the Comp32 system.
Contour maps were generated from the 4×4 DEMs for
qualitative field evaluations and for deriving gully networks
by the contour crenulation method. Flow lines, accumulation
values, stream orders, stream magnitudes, and drainage
divides were determined using the hydrologic tools of Spatial
Analyst. Five channel networks were derived for each of the
two gully systems: the blue line method, crenulations on
USGS 1:24,000 contour maps, crenulations on contours from
LiDAR-derived 4×4-m DEMs, and by automatic raster GIS
processing at two accumulation thresholds. The blue line
method of delineating channels from blue lines on maps and
the crenulation method of delineating channels from shapes
of contours are described by Morisawa (1957). Thresholds of
accumulation to define the drainage area at which channels
were initiated were set at 50 grid cells (800 m2) for one set of



Fig. 4. Terraces beneath pine forest show up as a distinct pattern. (A) Digital
Orthophoto Quad (DOQ) showing lineations at pine plantation in southwest
corner. (B) terracing on forest floor. (C) LiDAR-derived contours at 0.6-m
intervals showing distinctive topographic expression of terracing.
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networks and 100 grid cells (1600 m2) for the other. Selection
of these two threshold values was assisted by comparisons of
the resulting channel networks with the LiDAR-generated
contour maps to identify a drainage density representative of
the dissected landscape. Based on 1:24,000 contour maps,
much higher thresholds would have been selected and lower
drainage densities would have resulted. Strahler stream
orders and Shreve magnitudes (Strahler, 1957; Shreve, 1965)
were generated for each network using Spatial Analyst
hydrologic tools.

In addition to LiDAR data, two types of ground-truth data
were collected in the field during spring and summer of
2005. GPS points were collected in both gully systems along
selected gully rims and thalwegs and at cross-section end
points. GPS points were collected with a mapping-grade
Trimble Pro XR 12-channel differential receiver and
differentially corrected using a permanent base station.
This system is capable of producing sub-meter horizontal
and vertical accuracies under cropland (Trimble Navigation,
1998), although forest canopy and distance to the base
station presumably reduced precision. For the morphological
evaluation of LiDAR DEMs, conventional leveling was used
to survey 14 gully cross sections in the Comp32 system and
23 cross sections in the Mace system. Gully cross-section
field transects were compared with cross sections at the same
sites extracted from the LiDAR DEMs using Profile
Extractor, an extension to ESRI ArcView 3.3. The x–z
coordinates were extracted along transects defined by GPS
coordinates of the field cross-section survey endpoints.
Profile Extractor can be applied in two interpolation modes:
the default mode smooths increments between points and the
gridded mode produces stair-stepped profiles. Cross-section
data were generated in both modes on a few trials, but
smoothing was found to remove local steps with horizontal
spacings on the order of 30 cm that had no effect on the
overall shape of the cross sections, so the default mode of
smoothing was used for the LiDAR sections. The resulting
gully cross-sections derived from the DEM were visually
compared with the ground surveys by overlying plots
derived by both methods. Drainage densities for each gully
network were computed from total channel lengths taken
from GIS attribute tables and dividing them by the drainage
area of the gully system which was held constant for all
networks of a given system. The accuracy of LiDAR-
generated divides and drainage areas was not formally tested
but the maps of catchments were far superior to those
delineated from the contours on 1:24,000 USGS quadrangles
or from available USGS 30-m DEMs.

4. Results and analyses

4.1. Maps of gullies and headwater streams

The ALS data produced topographic maps that are far
superior to existing 1:24,000 topographic maps including
areas mapped under thick forest canopy. The maps reveal
topographic features beneath the forest canopy that are not
depicted on existing maps or aerial photographs, and would
otherwise go undetected. For example, agricultural terraces
under pine forest that were installed almost 50 years ago as
part of a gully rehabilitation project are detected as regularly
spaced contour lines (Fig. 4). In the Mace and Comp32 gully
systems, forest thinning has generated a uniform spacing of
the pine trees with a thick layer of pine needles and little
understory vegetation. Reconnaissance mapping with GPS
surveys indicates that the LiDAR-generated gully network
maps are planimetrically accurate within a few meters which
is sufficient for many land-resources management and hy-
drologic applications. GPS points collected along gully rims



Fig. 5. Contour maps generated from LiDAR-derived 4×4-m DEMs with
field-surveyed cross-section locations. Contour intervals are 0.6 m. (A)
Comp32 gully system. (B) Mace gully system with topologic errors (X's)
and omitted channels (dashed) where small parallel gullies were not detected
(see text for explanation).
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and thalwegs overlay accurately onto LiDAR-generated
contour maps and delineate individual gully branches at the
scale of the branching systems. Morphologic discrepancies
emerge as maps are enlarged to the scale of individual cross
sections, and this is addressed in the next section on gully
cross-section morphology.

The LiDAR maps of gullies are most distinct for wide,
deep gully systems with steep headwalls. These tend to be
older gullies that have deepened then widened. Gullies that
have not penetrated to saprolite are often relatively narrow,
shallow, and V-shaped and can be more difficult to detect,
especially in their upper reaches. The two gully systems
examined are quite distinct in this respect. Comp32 is
developed in less steep terrain and consists primarily of deep,
wide gullies with bulbous headwalls that form a dentritic
network of limited extent with few upland channels (Fig. 5A).
A partially preserved mid-gully terrace indicates that this
system was formerly a relatively wide, shallow hollow that
was incised and extended by historical erosion. These deep,
wide gullies are easily detected and mapped. In contrast, the
Mace system is developed on steeper hill slopes and is
dominated by long, shallow, V-shaped gullies that form a
radial drainage pattern reflecting the basin shape (Fig. 5B).
The ALS data had difficulty distinguishing some small
parallel gullies and this resulted in errors of omission. The
clear detection of parallel stabilization terraces (Fig. 4)
suggests that the limitation is not due simply to parallelism
but also arises from other factors discussed later. Channel
networks generated from LiDAR-derived topographic data
reveal substantial improvements in detail over networks
derived from alternative data. The resulting networks are
relatively accurate for large gullies but are over-simplified in
some cases — particularly in the Mace gully system where
adjacent small gullies were combined into single channels
(Fig. 5). Even with such errors, however, the resulting maps
of gully systems under canopy are far superior in resolution
and accuracy to alternative maps derived from conventional
remote sensing data.

As expected, the blue-line method of delineation under-
estimated all values of drainage network development and
hydrologic connectivity. No blue-line channels are depicted
in the Mace catchment and only one first-order channel
140 m long is shown for the Comp32 system (Table 2). Thus,
blue-line drainage densities of the two systems are extremely
low (zero and 11 m/ha, respectively). Using the contour-
crenulation method on 1:24,000 topographic maps produced
a substantial improvement over the blue line network maps
by indicating 3rd-order networks for both the Mace and
Comp32 systems and more realistic drainage densities. Some
of the crenulation ‘channels’ appear merely as undulations in
the topography and would be difficult to distinguish as active
channels without field visits. While the undulations in the
two study catchments are known to be occupied by gullies,
in otherwise similar areas they have no channels or have
gullies that have healed after years of forest recovery and no
longer carry concentrated flows in response to storm events.
The gully network maps that best represent field
observations are those developed by applying the contour-
crenulation method to contour maps generated from the
LiDAR-derived DEMs. This method of mapping channels
from the shapes of contour lines was assisted by knowledge
of the sites obtained during field surveys, but the channels
mapped were clearly demarcated by contours and little
ambiguity attended the mapping process. Some small gullies
and several large rills are not depicted by contour
crenulations and are not included on these network maps
which are, therefore, a conservative estimate of concentrated
flow lines on these slopes. The resulting maps produced 4th
and 3rd order streams, and 19 and 14 magnitude streams for
the Mace and Comp32 systems, respectively (Table 2).
Drainage densities of the networks produced in this way



Table 2
Gully statistics derived from GIS analysis

Network mapping method Order (Strahler) Magnitude (Shreve) Total length (m) Drainage density (m/ha) Comments

Macedonia Lake
Threshold 50 (Arc Hydro) 4 20 1988 284 Threshold=50 grid cells
Threshold 100 (Arc Hydro) 3 12 1453 207 Threshold=100 grid cells
Contour crenelation 4×4 4 19 2451 350 Using LiDAR-derived DEM
Contour crenelation Quad 3 5 798 114 Using USGS 1:24,000 map
Blue line 0 0 0 0 1:24,000 Philson Quadrangle

Compartment 32
Threshold 50 (Arc Hydro) 4 47 3372 269 Threshold=50 grid cells
Threshold 100 (Arc Hydro) 3 24 2609 208 Threshold=100 grid cells
Contour crenelation 4×4 3 14 1154 92 Using LiDAR-derived DEM
Contour crenelation Quad 3 6 895 71 Using USGS 1:24,000 map
Blue line 1 1 140 11 1:24,000 Sedalia Quad
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were much greater than those computed from the 1:24,000
quadrangle maps and differed greatly between the two gully
systems. The Mace system is steeper and more dissected than
the Comp32 system.

Reasonably good gully networks were also produced
automatically by applying the hydrology modules of Spatial
Analyst within the ArcMap GIS software to the 4×4-m
LiDAR-derived DEMs. The two iterations run on each gully
system based on accumulation thresholds of 50 and 100 grid-
cells produced similar networks with varying drainage
densities. The threshold method is based on a critical
drainage area for channel initiation, so the networks based
on a 50-cell threshold resulted in similar drainage densities in
both basins (∼275 m/ha) and the 100-cell threshold networks
had lower densities (∼207m/ha). In theMace system, the 50-
cell threshold more closely emulated the drainage density of
the preferred contour crenulation method (350 m/ha),
although it overestimated channel lengths on broad upland
convex slopes and underestimated the density of channels on
steeper mid-slope areas. In the Comp32 system, both
thresholds overestimated the crenulation drainage densities
by mapping extensive channels on uplands where little
concentrated flow is now occurring. These contrasts between
networks on the two nearby drainage systems illustrate the
need for independent calibration of channel network models
and suggest that combining slope gradients with critical
drainage areas could improve automated drainage network
computations at this scale.

4.2. Extracting cross-section morphological information

At the cross-section scale, the morphology of gullies was
poorly represented by the ALS topographic data due to
consistent underestimation of gully depths and overestima-
tion of top widths (Figs. 6 and 7). The profile sections
extracted from LiDAR-derived DEMs fail to accurately
characterize the deep, steep-walled gully sections but are
shallow and rounded off at the rims as if they were much
older and stable than they actually are. In the Mace system,
where long but small parallel gullies are separated by less
than 10 m, the extracted profiles often failed to distinguish
between the two gullies and produced a single shallow, wide
channel. This merging of channels explains the inability of
the flow accumulation model to delineate an accurate
network at these locations. The LiDAR-derived contour
map (Fig. 6B) also fails to clearly distinguish two channels in
some places suggesting that the problem is inherent to the
DEM and is not simply a problem with Profile Extractor. In
addition, the bare-Earth point data in this and other locations
show a non-random point distribution aligned with the
gullies suggesting a biased filtration of data (Fig. 8).

Point spacings of the LiDAR data used in this study are
approximately 3.0 m which supports the generation of 4×4-m
DEMs. Theoretically, the Nyquist frequency (twice the grid-
cell size) represents the minimum size of topographic features
that can be delineated by a grid-based DEM (Warren et al.,
2004). By this theory, the data should be able to resolve
geomorphic features no smaller than 8 m. Many of the gullies
detected in this study have top widths less than 5 m, but as
expected, their morphology is poorly represented. Givenmean
point spacings less than 4 m, a 2×2-m DEM was generated
from the original LiDAR data for the Mace system in an
attempt to improve the gully cross-section morphology. Cross
sections generated from the 2×2-m DEM using Profile
Extractor were indistinguishable from those generated from
the 4×4-m DEM and provided no improvement. This
indicates that additional information about the cross-section
shape cannot be extracted from the existing point data simply
by increasing DEM resolution.

The bias towards wider and shallower depictions of deep,
narrow gully systems limits the ability of these data to
identify erosion-prone zones or to detect changes through
time. Standard GIS procedures can identify slopes between
adjacent grid cells and produce grid maps that suggest
locations of likely erosion. GIS-derived slope maps are
commonly used as inputs to hill-slope erosion models.
However, the accuracy of these procedures depends on the
precision and resolution of the DEMs. The systematic
underestimation of cross-section side slopes produces
unrealistic slope maps within the gullies. Nor is it feasible
at this level to use these maps to monitor change or to
calculate erosion and sedimentation volumes. Differencing



Fig. 6. Two small parallel V-shaped gullies in Mace system. (A) Photograph
down center of eastern gully D at section D2 which is ∼2 m deep at this
location. LiDAR-derived data did not detect inter-gully divide on left bank.
(B) Map of site with 0.6-m contour interval.

Fig. 7. Comparison of field-surveyed and LiDAR-derived cross sections at
two locations across twin gully sites (see Fig. 6 map). (A) Lower profile
across two small parallel gullies. LiDAR data fail to distinguish the two
gullies. (B) Similar results for same two gullies up-slope at section D2. (C)
Profiles in larger single gully; LiDAR underestimates depths and side slopes.
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DEMs from sequential ALS flights with the observed
accuracies will not likely detect gully changes except
where new gully branches are established or substantial
enlargement occurs.

5. Discussion

5.1. Possible explanations for morphological limitations

One reason for the underestimates of gully depths and
slopes is the limited spatial resolution of bare-Earth data; i.e.,
point spacings limit the resolution of DEMs derived from the
point data. Other factors may also contribute to the limited
morphometric precision, such as shadowing of non-vertical
laser beams or biased filtering of gully rims. A similar
morphometric bias was noted with higher resolution LiDAR
data used to map gullies in Germany (Markus Dotterweich,
personal communication). The inability of LiDAR-derived
DEM data to map the bottoms of deep, steep-walled gully
bottoms in that study was attributed to off-nadir angles of
laser beams (Fig. 9). If so, positioning of flight lines during
ALS data collection more directly over discontinuities could
reduce the shadowing effect. In general, ALS data are
collected across a relatively small scan angle between 20 and
40° (Kraus and Pfeifer, 1998), however, so bottom shielding
by off-nadir angles should be limited to side slopes greater
than 50 to 70 degrees. Many gully slopes are steeper than 60
degrees which may explain the depth underestimations
observed in this study. If this factor is important, gully
morphology may be measured more accurately at selected
sites when scanned from an orientation so that the scanner is
directed longitudinally into the gully. This should be a
testable hypothesis.

In addition to underestimation of depths, gully top widths
were consistently over-estimated. This suggests that many
bare-Earth points along gully rims may have been errone-
ously removed by filtering or manual processing; that is, a
Type I error of omission. Filtering may have removed bare-
Earth points along rims because they are misinterpreted as
vegetation understory or discontinuities caused by objects
(beams 3 and 5 in Fig. 9). The point data superimposed on
the contour map reveal a tendency for points to be aligned
along gully margins suggesting a systematic removal of
adjacent points (Fig. 8). Most algorithms remove points near
abrupt changes as they are interpreted as objects, so it may be
possible to improve accuracies of gully morphometry by
adjusting the filtering of returns. The mid-tier canopy is
sparse in much of the two gully systems studied, so relaxing



Fig. 8. Portion of LiDAR-derived contour map from Mace system showing
bare-Earth data points. Non-random point alignments along and between
gullies suggest biased filtering (arrows). Contour interval is 0.6 m; numbers
give feet above mean sea level.

Fig. 9. Hypothetical explanation for filtering of gully rim points from a bare-
Earth data set generated by an ALS at an exaggerated low angle. See text for
explanation.
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filter parameters could improve results. Although the filter
algorithms used in this study are proprietary and the details
about how these data were filtered are unknown, much can
be learned by reviewing basic principles of filter methods.

5.2. ALS data filtering

The ALS point cloud must be filtered to separate points
representing canopy and human structures from the bare-
Earth points that are used for topographic mapping. This
filtering greatly influences the accuracy with which gully
morphology is represented in the bare-Earth data, so
selection and implementation of an appropriate filtering
algorithm should be optimized to retain steep and vegetated
slopes with discontinuities. In rural areas, it may not be
necessary to filter discontinuities as aggressively as when
buildings and other objects are present. The challenge is to
filter out points reflected by vegetation (virtual deforestation)
without removing points reflected by the unvegetated Earth.
Filtering methods use discriminant functions based on
discontinuities such as abrupt differences in height, slope,
distance to TIN facets, or distance to parameterized surfaces,
so abrupt topographic changes tend to be difficult to
distinguish from vegetation and are often filtered from the
bare-Earth data. Accuracies of bare-Earth maps are best for
surfaces that lack outliers, complex objects such as bridges
and buildings, thick vegetation, and abrupt discontinuities
(Sithole and Vosselman, 2004). Optimizing the filter to
minimize Type I errors (erroneous omission of bare-Earth
points) should increase the retention of data along gully rims.
Although these algorithms may generate more Type II errors
(erroneous positive identification of bare-Earth points), those
points tend to be fewer in number and have less influence on
total error than Type I errors (Sithole and Vosselman, 2004).
This should be especially true in rural areas where
discontinuities are less likely to be structures. Moreover,
Type II errors tend to be conspicuous and are easier to
remove manually than Type I errors. The retention of data
along discontinuities is of great relevance to the identifica-
tion of steep-walled gullies, so slope-based filters that tend to
remove discontinuities may not be appropriate for this
purpose.

The derivation of DEMs from LiDAR data and calcula-
tions of slope from them using standard geospatial processing
methods are also associated with error. Common GIS slope-
calculation methods can produce variable results depending
on algorithms used, preprocessing, DEM resolution, slope
gradient, and other factors (Warren et al., 2004; Weih and
Mattson, 2004). Slope computation methods often produce
errors that are negatively correlated with slope due to
overestimation of slope in flat areas and underestimation in
steep areas. The best results tend to be obtained from high-
resolution DEMs generated by using elevation data from
large areas surrounding a given grid cell (Warren et al., 2004).

5.3. Recommendations and future analyses

Application of ALS technology to hill-slope mapping
should be promoted as a high priority for land and water
resources management purposes and for scientific research.
ALS technology can greatly improve channel network maps
under forest canopy and topologic analyses such as stream-
ordering at levels of precision not previously possible by
standard remote sensing methods. If possible, data accuracies
should also be improved to enable identification of local
geomorphic features that are diagnostic of erosion processes.
Gully morphology is closely linked to geomorphic processes,
so recognition of the potential for gully enlargement or
stabilization should be based, in part, on a careful
examination of form within gully systems. For example,
monitoring of up-gully migration of plunge pools (knick-
points) on gully bottoms may indicate whether measures are
needed to protect existing structures, facilities, roads, or
hydraulic works. Accurate maps of gully widths, depths, and
other topographic details would also help with routine
planning activities such as stream protection during timbering
or land development (Hansen, 2001). Pollutant prevention
practices in the USA, such as Best Management Practices
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(BMPs), require the ability to identify stream types and
adjacent slopes and adjust practices within stream-side buffer
zones to protect water quality and associated beneficial uses.

Several adjustments to the ALS data collection and
processing could improve topographic mapping results. The
data used in this study have relatively sparse point densities
by current ALS research standards. Average bare-Earth point
spacings of approximately 30 cm are now achievable and
some systems are capable of even smaller mean spacings.
Higher-resolution images can improve the resolution of
DEMs and contour maps, and could improve the sensitivity
of the topographic data to abrupt changes in slopes at gully
margins. For example, improved LiDAR bare-Earth point
densities can be obtained by manipulating the timing of data
acquisition, such as by flying during the leaf-off period or
following fires or timbering. Higher point densities can also
be achieved through reducing the laser ‘footprint’ on the
ground by lowering flight elevations, decreasing air speed, or
using a scanner with a smaller beam divergence, smaller scan
angle, or higher pulse frequency (Wehr and Lohr, 1999).
Another adjustment that could improve the ability of ALS
data to map gully morphology would be to plan flight lines to
optimize scan directions along the longitudinal axis of main
gullies and channels. Using a helicopter, it could be possible
to position the flight to more accurately capture the details of
gully morphologic features. In addition, later flights could be
used to monitor changes that are desired for interpretations
on sediment, stability and change detection.

Spatial processing of the bare-Earth point data may
improve the resolution of morphological details. For
example, greater use of TIN data structures could reduce
rounding errors introduced by extraction of grid structures
during the generation of DEMs. Results may also be
improved by incorporating into TIN structures ancillary
data from GPS transects along primary breaks in slopes such
as the rims and bottoms of gullies. Coordinates of such
known discontinuities can be used as breaklines to train TIN
structures to explicitly delineate these features. Field survey
or photogrammetric data can be used to delineate breaklines
that can be incorporated in the spatial analysis to reduce
topological and topographic errors. These procedures may
sharpen the definition of discontinuities and complex
morphology in the spatial data and could improve gully
mapping. Breakline data were collected but were not
included in this analysis which is focused on the ability of
LiDAR to generate gully maps and morphologic information
over broad areas without reliance on field visits.

6. Conclusions

Detailed topographic data can generate a variety of data
products for spatial analysis of channel networks and
identification of headwater gullies. These products are of
growing importance for hydrologic modeling, water quality
assessments, ecological monitoring, aquatic restoration
projects, and a battery of other environmental management
objectives. Many gullies and channels can be clearly
identified, measured, and mapped on aerial photographs in
open areas with no vegetation canopy. LiDAR data may not
be needed in these locations, although it provides a relatively
fast and efficient means for surveying topographic details
over large areas even in these ideal circumstances. A major
advantage of ALS surveys is that they can be used to locate
and map gully systems that lie beneath thick canopy. This
mapping capability should be of increasing importance for
gully inventories, hydrologic modeling, determining land-
use treatments, and estimating soil erosion and sedimentation
volumes. As LiDAR technology becomes cheaper and the
analysis and products more refined, applications of the
technology will expand.

LiDAR-derived data successfully identified and charac-
terized the location, extent, and density of channels in the
two gully systems studied. The data provided superior maps
at far higher resolutions than standard topographic maps
used in the USA (1:24,000), and did so under foliage. The
resulting maps were planimetrically accurate at the scale of
branching gully systems and far more accurate and complete
than those that can be derived under forest cover from other
available sources. At the catchment scale, existing topo-
graphic maps and 30×30-m DEMs failed to show gullies,
tended to underestimate local slopes, and omitted details of
gully morphology. In contrast, the ALS data identified
gullies down to approximately 3 m top width and generally
mapped their locations accurately under forest canopy. The
identification of stream headwaters, mapping of drainage
networks, and calculation of drainage densities were greatly
improved. This capability should allow improved calibra-
tions of flow-accumulation models for the automatic
delineation of drainage networks from DEMs and the
parameterization of runoff and non-point-source pollution
generation models. Although gullies were occasionally
omitted from maps – especially when two small gullies
were closely spaced – the resulting network topology and
drainage density was a major improvement over current
topographic maps, even with crenulation analysis.

At the local scale, LiDAR-derived data provided
approximate measures of gully cross-section morphology.
These cross sections tended to be too wide and shallow with
sidewalls less steep than field-measured values. This
inaccuracy in small steep-walled gullies under forest canopy
is partly attributable to limited spatial resolutions of the bare-
Earth point data, but it may also be the result of biased
filtering of the ALS data or shadowing of laser beams due to
the deeply entrenched gullies. More research is needed to
explain this phenomenon and to seek remedies. At present
the effect limits the ability to apply ALS data to models of
gully geomorphic and hydrologic processes. Furthermore,
the ability to monitor gully development by repeat ALS
surveys and to measure on-going gully erosion, sediment
production and deposition, or to calculate sediment budgets,
depends on precise measurements at the reach scale. On a
positive note, ALS data-collection and processing



143L.A. James et al. / Catena 71 (2007) 132–144
technology is rapidly improving and this should ultimately
allow estimates of gully bed slopes, side slopes, and channel
morphology beneath forest canopy.
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