*Bibliografía

- -Torge W., 2001. Geodesy. 3rd Edition. Walter de Gruyter Berlin New York.
- -Hoffman B. (2001). GPS, Theory and Practice. Springer WienNewYork.
- -IERS Technical Notes. Nro 21 (1996) y Nro 32 (2003).
- -http://itrf.ensg.ign.fr/
- -http://www.sirgas.org/

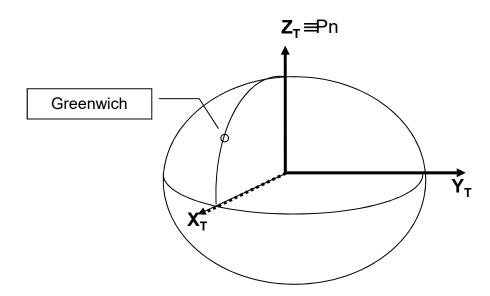
*La <u>definición de un Sistema Terrestre</u> está asociada a la problemática planteada por los movimientos de nuestro planeta en el espacio

-la Tierra es un cuerpo rotante y de velocidad variable (LOD)

-su eje de rotación instantáneo varia su orientación en el espacio (**Precesión y Nutación**)

*En consecuencia, la Tierra no es apta para definir un **sistema de referencia inercial** (Fijo en el Espacio o con movimiento no acelerado)

*Por eso, las estrellas (las radiofuentes extragalácticas) son las que definen:

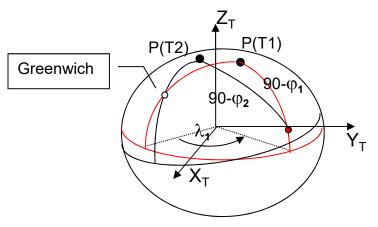

-el sistema de referencia internacional celeste ICRS: International Celestial Reference System

- y su realización el ICRF: International Celestial Reference Frame.

Sistema INERCIAL !!!

*En estas condiciones podemos pensar en proponer como Sistema Terrestre una terna de ejes cartesianos fijos a la Tierra, con su eje Z coincidiendo con el Eje Instantáneo de Rotación.

// La Precesión y la Nutación nos permitirán <u>relacionar</u> este sistema con el inercial (celeste) // ... y todo estará solucionado.



*En estas condiciones podemos pensar en proponer como Sistema Terrestre una terna de ejes cartesianos fijos a la Tierra, con su eje Z coincidiendo con el Eje Instantáneo de Rotación.

// La Precesión y la Nutación nos permitirán <u>relacionar</u> este sistema con el inercial (celeste) // ... y todo estará solucionado.

*Pero la posición del Eje Instanáneo de Rotación también es variable dentro del cuerpo terrestre (movimiento del polo). *** esto implica que nuestras coordenadas terrestres variarán permanentemente por el mov del polo :

¡ INACEPTABLE!

*En estas condiciones podemos pensar en proponer como Sistema Terrestre una terna de ejes cartesianos fijos a la Tierra, con su eje Z coincidiendo con el Eje Instantáneo de Rotación.

// La Precesión y la Nutación nos permitirán <u>relacionar</u> este sistema con el inercial (celeste) // ... y todo estará solucionado.

*Pero la posición del Eje Instanáneo de Rotación también es variable dentro del cuerpo terrestre (movimiento del polo). *** esto implica que nuestras coordenadas terrestres variarán permanentemente por el mov del polo : i INACEPTABLE!

*Por ello, la única manera es definir un Sistema de Referencia Terrestre "fijo" al cuerpo terrestre con su eje Z "próximo" al Eje Instantáneo de Rotación.

X(SRT) = R(mov polo). R (TSAG). R(N,P). X(ICRS)

* Los sistemas referencia <u>terrestre y celeste</u>, y los <u>parámetros que</u> <u>los relacionan</u> (matrices de rotación) son realizados y mantenidos por el **IERS**.

http://www.iers.org/MainDisp.csl?pid=34-8

Sistema y Marco de Referencia Terrestre del IERS

ITRS (IERS Terrestrial Reference System)

*Definición

- -terna Cartesiana (XYZ) con origen el Geocéntro de las masas terrestres, incluyendo la atmósfera y los océanos.
- -el eje Z próximo al Eje Inst de Rot y el eje X cercano al meridiano de Greenwich
- -la evolución en el tiempo no generará una rotación global con referencia a la corteza terrestre. (***)

*Realización

- -El **ITRS** se **materializa** a través del Marco de Referencia **ITRF** (IERS Terrestrial Reference Frame)
- -El **ITRF** se produce por la combinación de soluciones de diferentes técnicas espaciales: VLBI, SLR, LLR, DORIS y GNNS
- -Se calculan soluciones periódicamente denominadas **ITRFyy**, donde "yy" es el año de las observaciones más recientes.

El Marco de Referencia Terrestre del IERS

ITRF (IERS Terrestrial Reference Frame)

*WGS72 – WGS84 –ITRF88 - ITRF90 – ITRF92 – ITRF93 – ITRF94 – ITRF96 – ITRF97 – ITRF2000 – ITRF2005 – ITRF2008

*ITRF97

- -Soluciones: 4 VLBI, 5 SLR, 6 GPS (IGS), 1 combinada
- -Coordenadas y Velocidades de 550 estaciones de observación en 325 lugares

*ITRF2000

- -Soluciones: 3 VLBI, 7 SLR, 6 GPS, 2 DORIS, 1 LLR.
- -Soluciones regionales (ej. SIRGAS, EUREF)
- -Coordenadas y Velocidades para estaciones (aprox 800) en 477 lugares

*ITRF2005

- -Actualización de ITRF2000.
- -La solución se basa en prácticamente los mismos lugares pero incluye nuevas estaciones como mareógrafos y puntos de controlc

*ITRF2008

- -Actualización de ITRF2005
- -579 sitios / 920 estaciones

El Marco de Referencia Terrestre del IERS

ITRF (IERS Terrestrial Reference Frame)

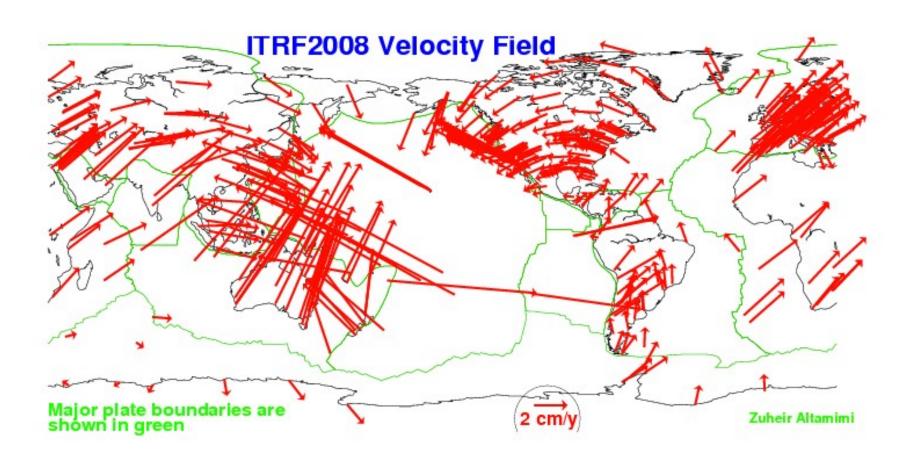
*WGS72 - WGS84 -ITRF88 - ITRF90 - ITRF92 - ITRF93 - ITRF94 - ITRF96 - ITRF97 - ITRF2000 IGS : International GNSS Service

*ITRF97

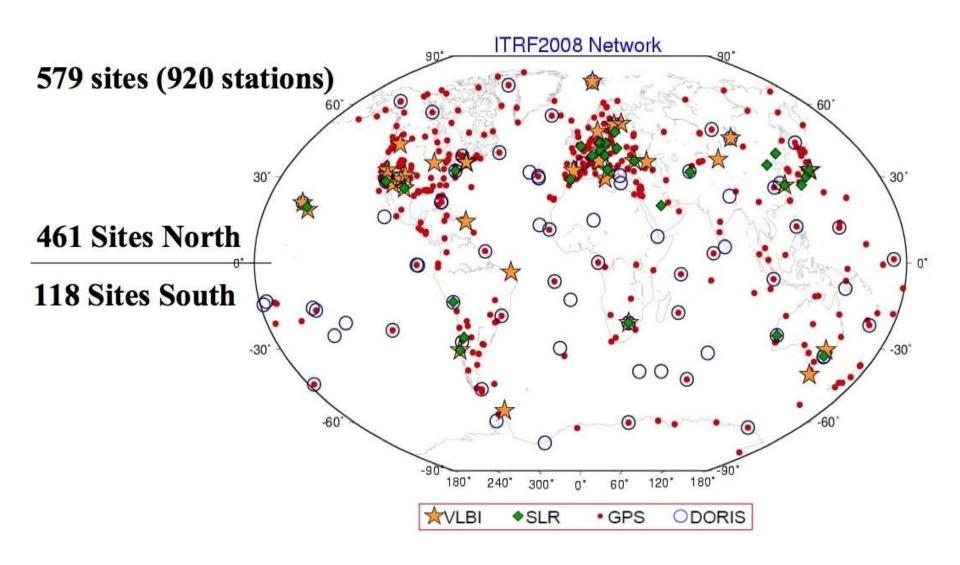
- -Soluciones: 4 VLBI, 5 SLR, 6 GPS (IGS), 1 combinada
- -Coordenadas y Velocidades de 550 estaciones de observación en 325 lugares

*ITRF2000

- -Soluciones: 3 VLBI, 7 SLR, 6 GPS, 2 DORIS, 1 LLR.
- -Soluciones regionales (ej. SIRGAS, EUREF)
- -Coordenadas y Velocidades para estaciones (aprox 800) en 477 lugares

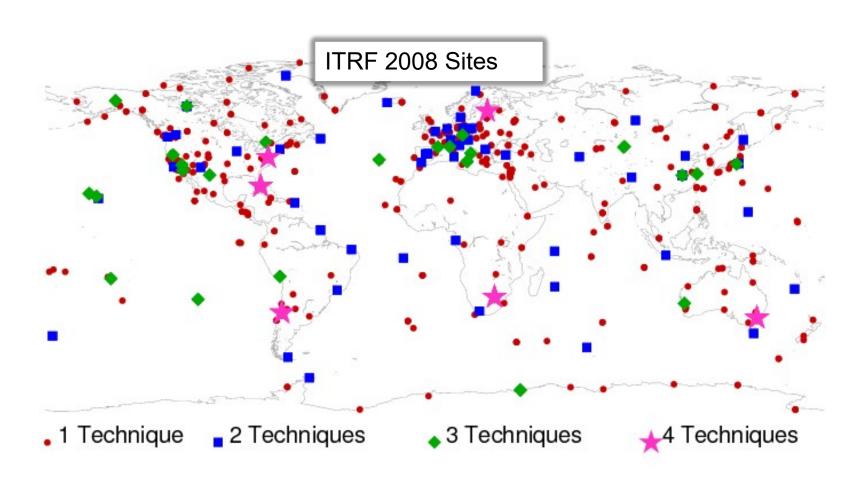

*ITRF2005

- -Actualización de ITRF2000.
- -La solución se basa en prácticamente los mismos lugares pero incluye nuevas estaciones como mareógrafos y puntos de controlc

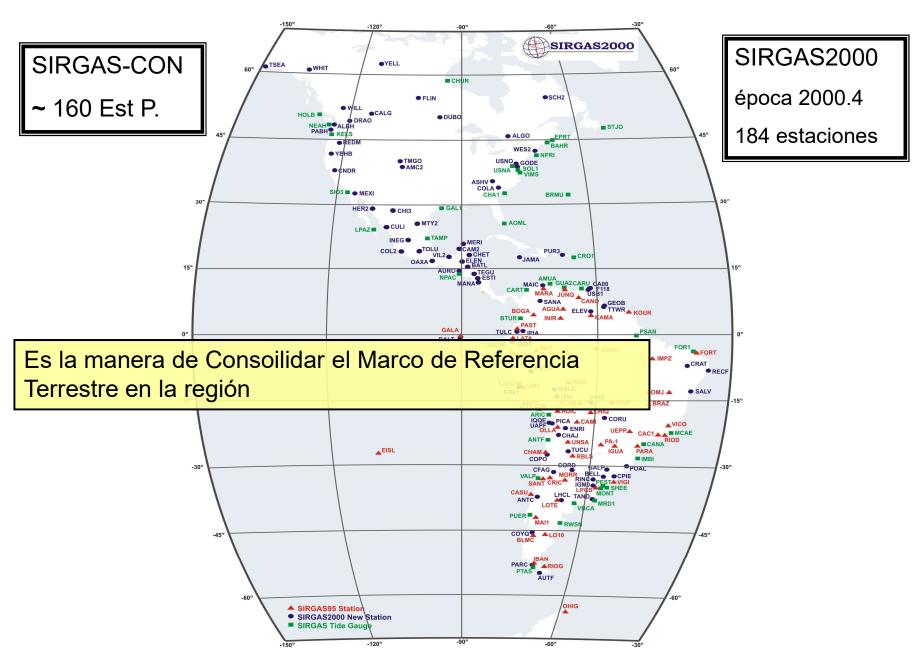

*ITRF2008

- -Actualización de ITRF2005
- -579 sitios / 920 estaciones

El Sistema de Referencia Terrestre del IERS


El Sistema de Referencia Terrestre del IERS

El Sistema de Referencia Terrestre del IERS


		ITRF2008	OITATE	N POSITIONS A GPS	T EPOCH 2005 STATIONS	.0 VELOCI	TIES
DOMES NB.	SITE NAME	TECH.	ID.	×/v× 	Y/Vy	Z/Vz m/m/y	Sigmas
100015006	PARIS	GPS	OPMT	4202777.434	171367.913	4778660.147	0.005 0.002 0.006
100015006 10002M006	GRASSE	GPS	GRAS	4202777.434 0118 4581690.969	0.0170 556114.738	4389360.731	.0011 .0004 .0012 0.001 0.000 0.001
10002M006		GPS		0139 4581690.975		4389360.734	0.001 0.000 0.001
1.0002M006	GRASSE			0139 4581690.974 0139	0.0186 556114.744 0.0186	4389360.739	.0001 .0001 .0001 0.001 0.001 0.001 .0001 .0001 .0001
10003M004	TOULOUSE	GPS	TOUL	4627846.086 0111		4372999.754	0.001 0.000 0.001 0.003 0.001 0.003
10003M009 10003M009	TOULOUSE	GPS	TLSE	4627851.889		4372993.492	0.001 0.001 0.001 .0003 .0001 .0003
10004M004		GPS		4231162.638 0111	-332746.764	4745130.859	0.004 0.001 0.004 .0009 .0003 .0009
10023M001	La Rochelle			4424632.623 0106	-94175.321	4577544.022	0.003 0.001 0.003 .0006 .0002 .0006 0.002 0.001 0.002
10090M001	SAINT JEAN			4433469.919 0118	362672.729 0.0186	4556211.652 0.0121	0.002 0.001 0.002 .0008 .0002 .0008 0.001 0.000 0.001
	SAINT JEAN			0118	0.0186	0.0121	.0008 .0002 .0008
	REYKJAVIK			0216	-1043033.508 0028	0.0059	0.001 0.000 0.001 .0001 .0001 .0002
	REYKJAVIK			0216	-1043033.501 0028	0.0059	0.006 0.003 0.012 .0001 .0001 .0002
10202M001 10202M001	REYKJAVIK	GPS	REYK	0216	-1043033.509 0028	0.0059	0.001 0.000 0.001 .0001 .0001 .0002
T0505W000	REYKJAVIK	GPS GPS	REYZ	0216		0.0059	0.001 0.001 0.001 .0001 .0001 .0002
10204M002 10204M002				0046	-727951.292 0.0144	0.0177	0.001 0.000 0.001
10204M002 10204M002		GPS		0046		0.0177	0.001 0.000 0.001
10302M003 10302M003	I ROMSO	GPS	TROM	2102940.284 0176	721569.413 0.0090		0.000 0.000 0.001 .0001 .0001 .0001

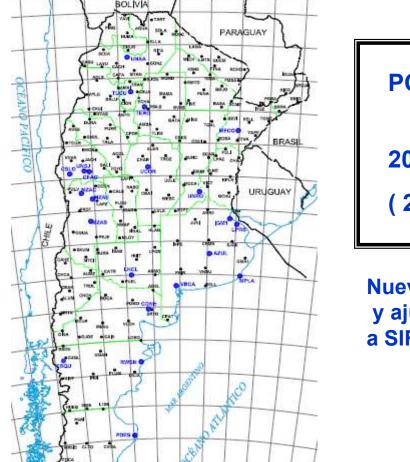
El Sistema de Referencia Terrestre en la Región ITRF ⇒ SIRGAS

El Sistema de Referencia Terrestre en la Región

ITRF ⇒ SIRGAS

El Sistema de Referencia Terrestre en la Región

$ITRF \Rightarrow SIRGAS \Rightarrow Marco Nacional$

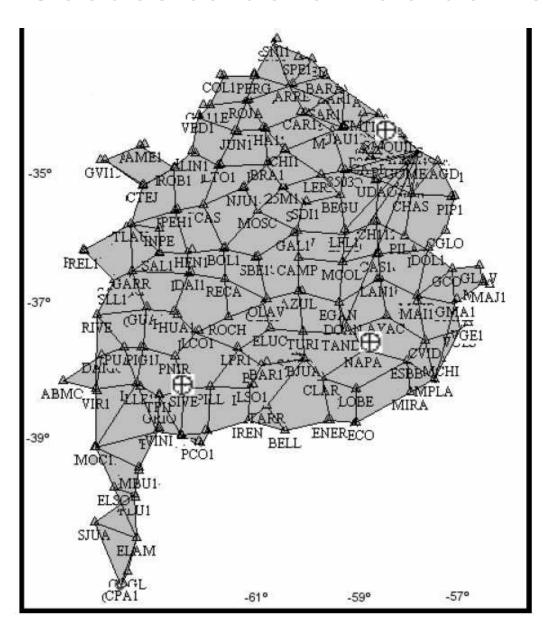

POSGAR94 (Oficial)

~ 130 puntos ITRF92 (WGS84), ép 1993.8

POSGAR98

SIRGAS, ép 1995.4 (***)

POSGAR2007


205 puntos

(26 EPs)

Nuevas observaciones y ajustado a SIRGAS

POSGAR: Posiciones Geodésicas Argentinas

Red Geodésica de la Pcia de Bs As

Posiciones Geodésicas Argentinas 2007

Introducción | Red POSGAR 2007 | Red PASMA | Redes Geodésicas Provinciales

POSGAR 07 ha sido adoptado por disposición del Director del Instituto Geográfico Nacional el 15 de mayo de 2009 como el nuevo "Marco de Referencia Geodésico Nacional" y reemplaza al hasta entonces vigente POSGAR 94.

Basado en ITRF 05 Época 2006.632 constituye la materialización sobre el territorio nacional del más moderno sistema de referencia a nivel mundial compatible con el marco regional SIRGAS (Sistema de Referencia Geocéntrico para las Américas) y responde a los más estrictos estándares de precisión y ajuste en vigencia.

Incorpora las más importantes redes geodésicas en uso asegurando parámetros de transformación entre las mismas y la nueva definición a fin de facilitar una georreferenciación unívoca en toda la República Argentina.

Utilizando como red de Orden cero al conjunto de estaciones permanentes GNSS de la Red RAMSAC (Red Argentina de Monitoreo Satelital Contínuo) permite aprovechar integramente los datos de las mismas aplicados a la nueva realización y define

Los Sistemas de Referencia en la práctica

*Consideremos una red de estaciones observadas con GPS en la época $T_{\rm obs}$ (2014.35)

*Para poder procesar correctamente y referir nuestros resultados se utilizan algunos puntos de coordenadas conocidas (ej. P2007, ép 2006.63):

*Las órbitas de los satélites estarán expresadas en ITRF2008, época 2014.35 (ép de las obs). Las efemérides transmitidas se dan en WGS84 que es prácticamente ITRF y las precisas en ITRF.

Las coordenadas de las estaciones deben estar en el mismo sistema de referencia (y época) que las posiciones de los satélites !!!

Diferentes situaciones que dependerán del tamaño de la Red y las condiciones geodinámicas ...

Los Sistemas de Referencia en la práctica

Procedimiento para el cálculo de las nuevas coordenadas:

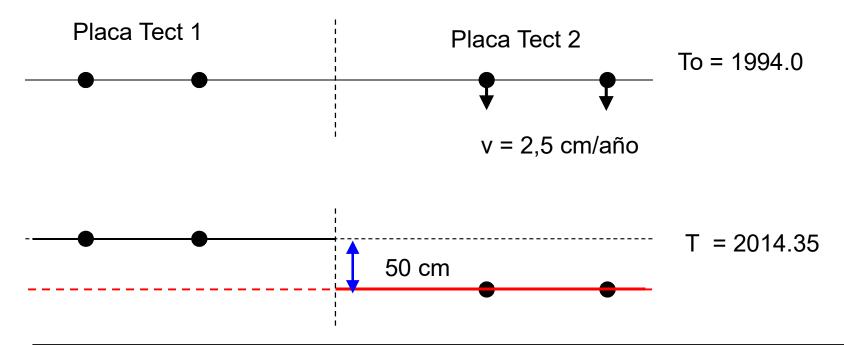
1* Transformar las coordenadas de empalme al sistema de referencia y época de las órbitas

 $X(ITRF, 2014.35) = X(P2007, 2006.63) + V_{x}.(2014.35-2006.63)$

2* En estas condiciones realizar el procesamiento

De algún modelo ...

denadas

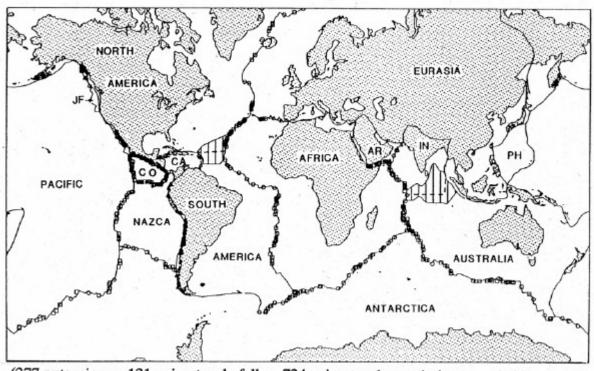

3* Para obtener las coordenadas de los nuevos puntos en POSGAR07 (2006.63):

 $X(POSGAR, 2006.63) = X(POSGAR, 2014.35) - V_x.(2014.35-2006.63)$

V : existen modelos de velocidades a nivel global y regional que permiten estimar los valores de la velocidad en cada punto.

Los Sistemas de Referencia en la práctica

*Un caso posible ...

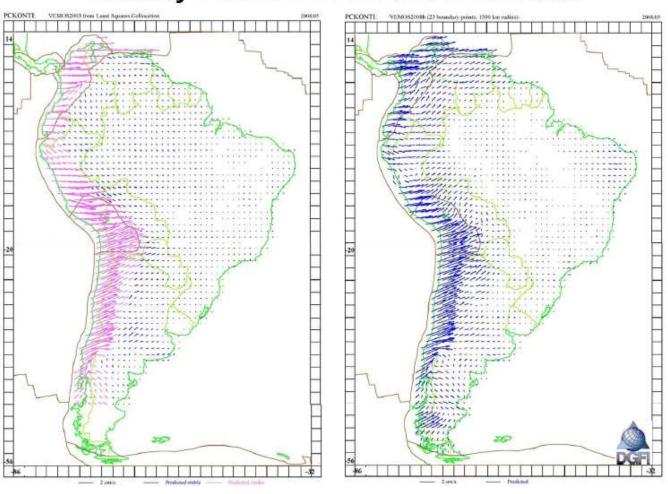


Si no consideramos correctamente las velocidades (al menos las relativas), la obra lineal sufrirá un desplazamiento !!!

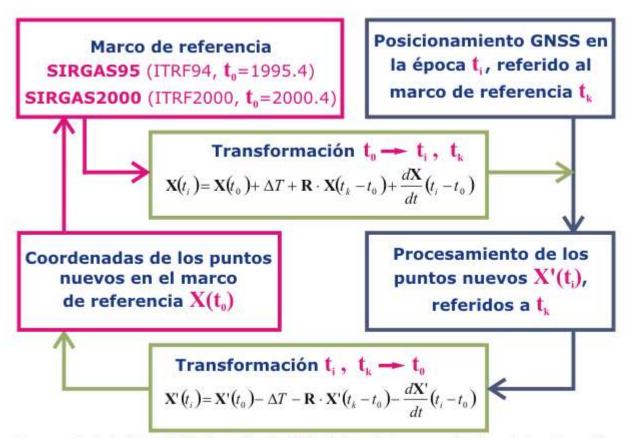
Modelos de velocidades

1)* Existen modelos basados en información geológica y geofísica, como el NNR-Nuvel-1A (No Net Rotation Northwestern University VELocity Model, DeMets et al., 1994).

Observaciones del modelo de la tectónica de placas NUVEL-1 (DeMets et al. 1990)

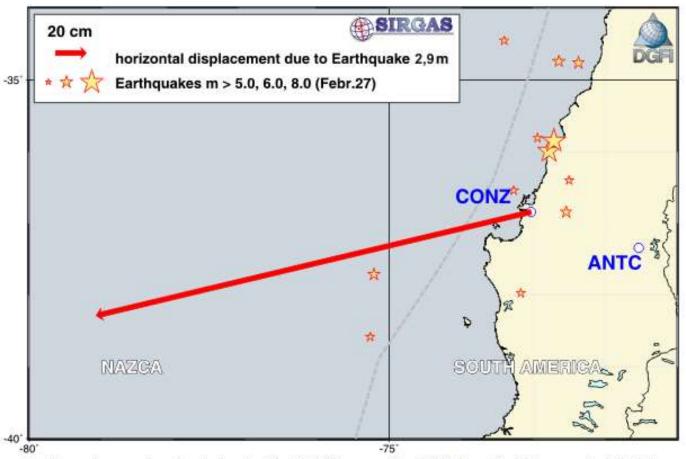


(277 extensiones, 121 azimutes de fallas, 724 azimutes de movimientos = 1122 en total)

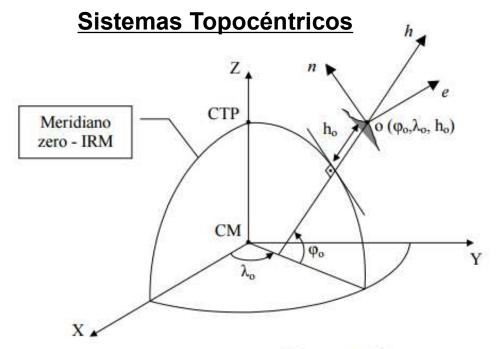

Modelos de velocidades

2)* Otros modelos son de tipo Geodésico. Se basan en determinaciones actuales de velocidades a partir coordenadas calculadas con técnicas espaciales (VEMOS y APKIM 2000)

Velocity Fields VEMOS 2003 and 2008



Modelos de velocidades



Procesamiento de datos GNSS incluyendo velocidades de las estaciones y parámetros de transformación entre diferentes marcos de referencia.

Modelos de velocidades

Cambio en las coordenadas de la estación CONZ (Concepción, Chile) después del terremoto del 27 de febrero de 2010

$$\begin{bmatrix} \mathbf{e} \\ \mathbf{n} \\ \mathbf{h} \end{bmatrix} = \mathbf{R}_{1}(90^{\circ} - \phi_{o}) \cdot \mathbf{R}_{3}(90^{\circ} + \lambda_{0}) \cdot \begin{bmatrix} \mathbf{X} - \mathbf{X}_{o} \\ \mathbf{Y} - \mathbf{Y}_{o} \\ \mathbf{Z} - \mathbf{Z}_{o} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{e} \\ \mathbf{n} \\ \mathbf{h} \end{bmatrix} = \begin{bmatrix} -\sin \lambda_o & \cos \lambda_o & 0 \\ -\sin \phi_o \cdot \cos \lambda_o & -\sin \phi_o \cdot \sin \lambda_o & \cos \phi_o \\ \cos \phi_o \cdot \cos \lambda_o & \cos \phi_o \cdot \sin \lambda_o & \sin \phi_o \end{bmatrix} \cdot \begin{bmatrix} \mathbf{X} - \mathbf{X}_o \\ \mathbf{Y} - \mathbf{Y}_o \\ \mathbf{Z} - \mathbf{Z}_o \end{bmatrix}$$