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a b s t r a c t

This paper highlights a novel segmentation approach for single trees from LIDAR data and compares
the results acquired both from first/last pulse and full waveform data. In a first step, a conventional
watershed-based segmentation procedure is set up, which robustly interpolates the canopy height model
from the LIDAR data and identifies possible stem positions of the tallest trees in the segments calculated
from the local maxima of the canopy height model. Secondly, this segmentation approach is combined
with a special stem detection method. Stem positions in the segments of the watershed segmentation
are detected by hierarchically clustering points below the crown base height and reconstructing the
stems with a robust RANSAC-based estimation of the stem points. Finally, a new three-dimensional (3D)
segmentation of single trees is implemented using normalized cut segmentation. This tackles the problem
of segmenting small trees below the canopy height model. The key idea is to subdivide the tree area
in a voxel space and to set up a bipartite graph which is formed by the voxels and similarity measures
between the voxels. Normalized cut segmentation divides the graph hierarchically into segments which
have a minimum similarity with each other and whose members (= voxels) have a maximum similarity.
The solution is found by solving a corresponding generalized eigenvalue problem and an appropriate
binarization of the solution vector. Experimentswere conducted in the Bavarian Forest National Parkwith
conventional first/last pulse data and full waveform LIDAR data. The first/last pulse data were collected in
a flight with the Falcon II system from TopoSys in a leaf-on situation at a point density of 10 points/m2.
Full waveform data were captured with the Riegl LMS-Q560 scanner at a point density of 25 points/m2
(leaf-off and leaf-on) and at a point density of 10 points/m2 (leaf-on). The study results prove that the
new 3D segmentation approach is capable of detecting small trees in the lower forest layer. So far, this
has been practically impossible if tree segmentation techniques based on the canopy height model were
applied to LIDAR data. Compared to a standard watershed segmentation procedure, the combination of
the stem detection method and normalized cut segmentation leads to the best segmentation results and
is superior in the best case by 12%. Moreover, the experiments show clearly that using full waveform data
is superior to using first/last pulse data.

© 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.
1. Introduction

The development of new approaches to forest inventory
utilizing LIDAR data has been an important research issue in the
past.Beside area-based methods (e.g. Naesset (2004)), techniques
for single tree extraction from LIDAR data have been investigated
for mapping forests at the tree level and for identifying important
parameters, such as tree height, crown size, crown base height, and
tree species. Most of the methods for single tree detection have in
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common to find the trees from local maxima in the canopy height
model (CHM). The stem position usually corresponds with a peak
in the CHM, and the crown diameter is basically found from the
segment polygon which is delineated from the CHM surface. For
instance, Hyyppä et al. (2001) interpolate a local CHM from the
highest laser reflections, Persson et al. (2002) apply the active
contour algorithm, and Solberg et al. (2006) interpolate the CHM
with a special griddingmethod and subsequently smooth the CHM
with an appropriate Gaussian filter. Stem positions are derived
from the interpolated CHM at the highest positions (Solberg
et al., 2006) or from a special local tree shape reconstruction
(Brandtberg, 2007). Tree crowns are typically derived with the
watershed algorithm (Pyysalo and Hyyppä, 2002) or by a slope-
based segmentation (Persson et al., 2002; Hyyppä et al., 2001).
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Recently, Solberg et al. (2006) proposed a region growing method
that starts from local surface maxima and finds crown polygons
optimized in shape. The application of thismethod to a structurally
heterogeneous spruce forest leads to an overall detection rate of
66% and a commission rate (= false detections) of 26% if the CHM
is smoothed three times with a Gaussian filter of size 30 cm.
The study of Persson et al. (2002) reports a detection rate of 71%
for a Scandinavian forest dominated by spruce and pine. Heurich
(2006) demonstrates that the segmentation method of Persson
et al. (2002) leads to a detection rate of 51% for coniferous trees,
40% for deciduous trees and on average 45% in the Bavarian Forest
National Park. Thus, the results of Persson et al. (2002) are by
far better than the results of Heurich (2006), who used the same
algorithm. This shows the strong dependency of segmentation
results on the forest type. Timber volume is usually estimated from
the tree height and crown diameter. In the study of Persson et al.
(2002), 91% of the timber volume could be determined with 22%
root mean square error (RMSE). Heurich (2006) estimates 85% of
the timber volume with 31% RMSE.
The drawback of these methods is that they are solely oriented

on the CHM, which is reconstructed from the LIDAR points in
an interpolation process that smoothes the data to some extent.
The degree of smoothing directly affects the success rate in
terms of false positives and negatives. Moreover, in some cases
neighbouring trees do not appear as clear separated local maxima.
Thus, approaches that solely use the CHM will be restricted in
the success rate anyway, especially in heterogeneous forest types
where groups of trees grow close together. Since smaller trees
below the canopy do not appear in the CHM the detection rate of
trees with small diameter at breast height (DBH) is considerably
low. Maltamo et al. (2004) developed a procedure to predict small
occluded trees in lower forest levels by theoretical distribution
functions. Timber volume and stem density can be estimated with
16% RMSE and 49% RMSE, respectively. The distribution functions
must be calibratedwith field data. Mehtätalo (2006) dealt with the
same subject and estimated the number of stems using a function
that describes the dependence of the probability of observing a
tree on the crown radius. The study refers to simulated data and
reports in the best case an RMSE of 11% for the number of detected
stems. So far, little attention has been paid to reconstruct single
trees in three dimensions using LIDAR data, mainly because of the
low spatial point density of conventional first/last pulse systems.
Morsdorf et al. (2003) segments trees in a 3D voxel space with
the k-means clustering method using the local maxima of the
CHM as seed points. Recently, Wang et al. (2008) presented a new
method for 3D reconstruction of trees and tackled the problem
with a hierarchical morphological approach. The 3D segments of
trees are found by combining hierarchically the individual 2D tree
crown regions detected in each layer of a voxel space. If using
standard parameters, the overall detection rate in mature stands
(tree age > 90 years) is 84%. In more complex younger stands
(tree age > 60 years) the mean detection rate degrades to 75%
if the process parameters are individually optimized. The method
remains dependent on the correct findings of tree tops. Moreover,
the procedure has limitations in younger stands (tree height< 20
m) in the case of first/last pulse data.
In general, the single tree approach has some clear advantages

compared to the area-based approach. If successfully applied,
it has the potential to provide tree species information and to
estimate more precisely the timber volume. However, Maltamo
et al. (2007) pointed out that single tree detection methods need
to be more accurate than standard forest inventory methods
assuming that reduced cost must not be the only driving force
to replace standard methods. The study has shown that timber
volume can be estimated with about 30% RMSE accuracy if derived
as a function of the tree height. Clearly, the parameter DBH is not
a deterministic parameter but is also dependent on many other
parameters which are not of allometric nature. Thus, in view of
the apparent advantages of single tree methods, the detection
rate, the 3D reconstruction of single trees and the accuracy of tree
species classification must be improved. New technologies like
small footprint full waveform systems will be one new driving
force to push the methods to a new level since they detect
significantly more reflections in the tree crown and provide the
intensity and the pulse width as reflecting parameters. Moreover,
new reconstruction methods for single trees must truly work in
three dimensions and must be flexible to use the various types of
information that modern LIDAR techniques provide.
Recent advances in LIDAR technology have rendered possible

new full waveform scanners that provide a higher spatial point
density as well as additional information on the reflecting
characteristics of the forest structure like branches and stems.
Wagner et al. (2006) focused on the calibration issue and the
decomposition of full waveform data with a series of Gaussians.
They also showed that different types of vegetation, such as trees
and bushes, can be separated using the cross section calculated
from the waveforms. Jutzi and Stilla (2006) fit Gaussians to the
surface response that is obtained by the measurement of the
individual emitted waveform and a corresponding deconvolution
of the received waveform. Recently, Kirchhof et al. (2008)
presented a method to improve the reconstruction of buildings
partly occluded by vegetation by pre-segmenting reflections from
the vegetation using the surface response. Reitberger et al. (2008)
also showed the decomposition of waveforms by fitting Gaussians
to the waveform. Compared to conventional first/last pulse data,
an increase in the point density by a factor of 2 could be verified.
The classification of coniferous and deciduous trees is successfully
demonstrated using salient features calculated from the pulse
width and the intensity of the decomposed waveform. Finally,
Stilla and Jutzi (2008) illustrated the general principles of designing
small-footprint pulsed laser systems and analysing the received
waveform.
Obviously, full waveform data render possible new approaches

to reconstruct and classify objects, such as trees. However, an
important question that still needs to be resolved is: how much
do full waveform data really improve forest inventory methods
compared to conventional first/last pulse data? More precisely, it
will certainly be interesting to find out whether new extraction
methods for single trees can be developed that take advantage of
full waveform data and improve the detection rate significantly.
The objectives of this paper are (i) to highlight a new

segmentation method based on normalized cuts that extracts
single trees using full waveform LIDAR data, (ii) to present the
results of the method when applied to first/last pulse data and full
waveform data acquired in the same area in leaf-on and leaf-off
situations at different point densities, and (iii) to evaluate the new
segmentation method with respect to the success rate.

2. Preprocessing of LIDAR data

2.1. Decomposition

We assume a point cloud in a region of interest (ROI)
represented by XTi = (xi, yi, zi,Wi, Ii) (i = 1, . . . ,NROI) LIDAR
points that result from reflections of the laser beamat the positions
(xi, yi, zi) (Fig. 1). In the case of a full waveform scanner, a
waveform decomposition provides the pulse width Wi and the
intensity Ii as attributes (Jutzi and Stilla, 2005; Reitberger et al.,
2008). Note that Ii is the integral of the return signal and, hence,
this intensity value is physically the pulse energy. In comparison,
conventional discrete return LIDAR systems provide only the
coordinates of the reflections (xi, yi, zi) and – in many cases
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Fig. 1. 3D points and attributes derived from a waveform.

– also the intensity. However, in general, the users have only
little knowledge how this intensity value is obtained in these
systems. Typically, it is the maximum amplitude of the returned
pulse, which is incorrectly called intensity. The advantage of full
waveform LIDAR data is that, basically, each reflection can be
detected by the waveform decomposition. Hence, neighbouring
targets with a minimum distance of vgτ/2 in the direction of the
laser beam can be separated, where vg is the group velocity of
the laser pulse in the atmosphere and τ is the pulse duration (full
duration at half maximum) of the Airborne Laser Scanning (ALS)
system (Wagner et al., 2006). For example, the pulse duration of 4
ns of the Riegl LMS-Q560 scanner leads to a minimum distance of
0.6 m. This is remarkable since conventional discrete return LIDAR
systems have a dead zone of at least twice the above-mentioned
minimumdistance due to internal electronic characteristics,which
makes these systems effectively blind after a single reflection. The
length of this zone varies from system to system and even amounts
to about 3 m for older systems.

2.2. Calibration

The calibration of the valuesWi and Ii is achieved by using the
pulse widthW e and the intensity Ie of the emitted Gaussian pulse.
Additionally, the intensity is corrected with respect to the varying
distances si between the laser scanner and the reflecting object
with

W ci = Wi/W
e (1)

Ici = (Ii · s
k
i )/(I

e
· sk0) (2)

assuming a target size larger than or equal to the footprint (Wagner
et al., 2006). The calibrated values Ici refer to the same nominal
distance s0, which can be chosen arbitrary. However, for numerical
reasons a value around the mean flying height of the campaign
is advisable. The exponent k in Eq. (2) amounts theoretically to
the value 2. In practice, however, it might deviate depending on
the LIDAR system. In Section 4.3 a procedure for determining an
optimal value of k for a given data set is demonstrated. A detailed
treatment of the calibration issue can be found in Höfle and Pfeifer
(2007). They compare several data driven calibration models with
a theoretical model.

3. Segmentation

3.1. Watershed segmentation

A first crude segmentation of the tree crowns is calculated from
a CHM by the watershed algorithm according to Vincent and Soille
(1991), which is a non-parametric segmentationmethod. The CHM
is derived by subdividing the ROI into a grid having a cell spacing of
cp and NR cells and filtering the highest 3D points within each cell
of size c2p . The height zj of these points is corrected with respect to
the ground level zgroundj which is estimated from a given DTM by
bilinear interpolation:

zCHMj = zj − z
ground
j (j = 1, . . . ,NR). (3)

In the next step, all the highest 3D points XTj = (xj, yj, z
CHM
j ) (j =

1, . . . ,NR) of all NR cells are robustly interpolated into a grid that
has NCHM = NX × NY grid points

XCHMInt
T
k,l = (x

CHM
Int k,l, y

CHM
Int k,l, z

CHM
Int k,l)

(k = 1, . . . ,NX ; l = 1, . . . ,NY ) (4)

and a grid width gw , where NX and NY are the numbers of grid
lines. For this purpose a method called ‘gridfit’ (D’Errico, 2006)
is adopted which smoothens the surface by keeping the surface
gradients as small as possible. The balance between interpolation
and regularization is determined by the adjustable smoothing
factor λ. Both steps are carried out simultaneously in a least
squares adjustment using the observation equations[
A
λB

]
(zCHMInt )

T
=

(
(zCHM1 , . . . , zCHMNR )T

0

)
. (5)

The matrix A (NR × NCHM) contains the coefficients of the bilinear
interpolation and the matrix B (NCHM × NCHM) comprises the
coefficients of the first partial derivatives of neighbouring cells. The
vector zCHMInt , representing the interpolated posts, has the length
NCHM. The result is a smoothed CHM having NCHM equally spaced
posts to which the watershed segmentation is applied. Note that
the factor λ controls both the smoothing and the regularization in
the case of ill posed situations. The local maxima of the watershed
segments define possible tree positions (XCHMstem i, Y

CHM
stem i) (i =

1, . . . ,Nseg) (Fig. 2). The heights ZCHMstem i are derived from the highest
reflections in the segments.
This segmentation procedure is mainly controlled by the

parameters cp, gw and λ for the CHM construction, whose values
have been optimized in a sensitivity analysis (Section 4.4.2). In this
process, the parameter settings cp = 0.5 m, gw = 0.5 m and
λ = 4 turned out to be optimal. The watershed algorithm itself
does not take any parameters. Note that a certain smoothing of
the CHM is necessary in order to avoid an oversegmentation. On
the other hand, neighbouring trees often merge thereby and form
a tree group instead of single trees. Furthermore, smaller trees in
the intermediate and lower height level cannot be recognized since
they are not visible in the CHM. Fig. 3 shows the CHM of a dense
spruce stand, where the black lines represent the positions and
heights of the reference trees. Apparently, most of the reference
trees are not represented in the CHM.

3.2. Detection of tree stems

The key idea of the stem detection is to separate neighbouring
trees forming a tree group and to improve the accuracy of the
tree positions calculated from the local maxima of the CHM. The
approach is motivated by the observation that in case of full
waveform data the stems of trees are very often clearly visible. For
example, the centre segment of Fig. 4a contains three trees, which
cannot be separated by the watershed segmentation, whereas the
stems of at least two of the trees can be clearly seen in Fig. 4b.
The method works in a three-step algorithm.
First, the NS points X

Seg
j (j = 1, . . . ,NS) within a watershed

segment are separated into ground points, stem points and crown
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Fig. 2. CHM with (a) local maxima and (b) watershed segments.
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Fig. 4. (a) Orthophoto with watershed segments (green), reference trees (white) and local maxima (red) and (b) laser reflections for the centre segment. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. (a) Tree height layers and (b) determination of the crown base height.
points. Ground points are points within a small height bound
(e.g. 1 m) to the DTM. The remaining NS,tree tree points are divided
into stempoints and crown points by finding an appropriate crown
base height hbase. This is achieved by (i) splitting the tree points into
l layers with height of 0.5 m (Fig. 5a), (ii) calculating the number of
points ni per layer, (iii) forming the vector Np = {ni/NS,tree}̇ (i =
1, . . . , l), (iv) smoothingNp with a 3×1 Gaussian filter and, finally,
(v) defining hbase as the height that corresponds to 0.15% of the total
number of tree points (Fig. 5b). The points below hbase are theNstem
potential stem points and can result from one or several stems. Of
course, points from the understorey or from isolated branchesmay
be contained, too.
In the second step these points are clustered according to

their horizontal distances, in order to get a first estimation of
the number of stems and an assignment of the points to the
stems. The following hierarchical clustering scheme is applied
after calculating the Euclidian distance matrix Dstem = {dij =√(
xi − xj

)2
+
(
yi − yj

)2
; i = 1, . . . ,Nstem; j = 1, . . . ,Nstem; i#j}

(Heijden et al., 2004):

1. Assign each point to its own cluster, resulting in Nstem clusters.
2. Find the closest pair of clusters and merge them in to one
cluster. The number of clusters reduces by one.

3. Compute the distance d between the new clusters and each of
the old clusters.

4. Repeat steps 2 and 3 until all items are clustered into a single
cluster of size Nstem or a predefined number of clusters is
achieved.

In this clustering process the distance between two clusters Ci
and Cj is defined as the shortest distance from any point in one
cluster to any point in the other cluster. The clustering yields
a dendrogram which shows at which distance the clusters are
grouped together. By defining a minimum distance dmin = 1.2 m
between the cluster centres the most suitable number of clusters
Ncluster is selected.
In the third step, the stems are finally found by applying

a RANSAC-based 3D line adjustment to all the Ncluster clusters
and labelling all 3D lines with an incident angle smaller than
α = 7◦ and a minimum number of 3 points as stems gstem. This
procedure eliminates clusters that result from the understorey and
do not show a vertical main direction. Also, it cleans the cluster
point cloud from erroneous points, e.g. from branches. The stem
positions (X StDetstem i, Y

StDet
stem i) (i = 1, . . . ,NStDet) are calculated as the

intersection of the 3D line gstem with the DTM. Finally, the tree
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Fig. 6. Stem point clusters and stems reconstructed with RANSAC.

height Z StDetstem is derived from the highest laser point that lies within
the cylinder Vstem. The cylinder Vstem is defined by gstem as the
centre line of the cylinder and the radius R = 1 m. If there is
a gap of more than 3 m above hbase, the highest point below the
gap is used as tree height, because the points above the gap most
probably belong to another tree.
Fig. 6 shows the stem point clusters of the hierarchical

clustering and the reconstructed stems for the sample segment
in Fig. 4. Three stems can be clearly isolated. A comparison of the
stem positions with reference trees (Fig. 7) evidences that all trees
within the watershed segment in the centre could be found with a
high accuracy.
In general, the approach improves the detection rate of

single trees in the intermediate and upper tree layers and the
accuracy of the tree positions originally provided by thewatershed
segmentation, even for segments with only one tree. The stem
detection works successfully, if there are enough stem reflections
and if the stem area can be reliably separated from the crown
points. It fails, of course, when many small trees are located
below the taller trees. Another drawback is that the crown points
belonging to the original segment are not separated with respect
to the detected stems.
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Fig. 7. Orthophoto with watershed segments (green), reference trees (white dots),
local maxima (red crosses) and detected stems (yellow crosses). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

3.3. Normalized cut segmentation

3.3.1. Approach
In order to tackle the drawbacks of the 2D watershed

segmentation and the stem detection we have set up a true 3D
segmentation of single trees using the normalized cut method
known from image segmentation (Shi and Malik, 2000). Before
giving a detailed description of this method, some results of
complex situations (Fig. 8) are shown, to demonstrate the
potential of the approach. Here normalized cut segmentation
works excellently and the watershed segmentation and stem
detection approaches fail.
In the first step, the ROI is subdivided into a voxel structure

with a voxel spacing of vp and Nv = Nxv × N
y
v × N

z
v voxels

(Fig. 9). Within each voxel (l,m, n) (l = 1, . . . ,Nxv;m =

1, . . . ,Nyv ; n = 1, . . . ,N
z
v) of size vp

3 we collect Nlmn reflections
XTi = (xi, yi, zi,Wi, Ii) (i = 1, . . . ,Nlmn), where only voxels
comprising at least one reflection are used in the segmentation.
The voxel space is represented as a graph G = {V , E} with V
as the voxels representing the nodes and E as the edges formed
between every pair of nodes. The similarity between two nodes
{i, j} ∈ V is described by the weights wij which are computed
from features associated with the voxels. Basically, the similarity
between voxels decreases with increasing distance between two
voxels and drops down to zero beyond the threshold rXY in order
to keep the graph G at a reasonable size for computational reasons.
The goal of normalized cut segmentation is to divide the graph G
into disjoint voxel segments A and B (Fig. 9) by maximizing the
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Fig. 9. (a) Subdivision of the ROI into a voxel structure and (b) division into two
tree segments.

similarity of the segment members and minimizing the similarity
between the segments A and B.
The corresponding cost function is

NCut(A, B) =
Cut(A, B)
Assoc(A, V )

+
Cut(A, B)
Assoc(B, V )

(6)

with Cut(A, B) =
∑
i∈A,j∈Bwij as the total sum of weights between

the segments A and B and Assoc(A, V ) =
∑
i∈A,j∈V wij representing

the sum of the weights of all edges ending in the segment A.
The minimization of NCut(A, B) is solved by the corresponding
generalized eigenvalue problem

(D−W )y = λDy. (7)

The n × n weighting matrix W is representing the weights wij
between all n nodes of the graph G and is inherently symmetric
and positive semi-definite. The n × n degree matrix D is directly
derived from W and holds the degree of a node i at the diagonal
element D(i, i) =

∑
jwij.

The minimum solution y1 for (7) corresponds to the second
smallest eigenvalue λ1. Since y1 is real-valued, but may only
have two distinct indicator values (+1,-1) we need to binarize it
by introducing a threshold thresbin into the histogram of y1. An
appropriate value for thresbin can be found in different ways. Using
simply the values 0 or median(y1) leads already to proper results.
The results can be improved by testing several possible values
with respect to the resulting value of NCut and choosing the value
causing the smallest NCut value. We find the optimal thresbin value
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by stepwise testing all values within the range of y1 in a small
interval. Thus, the graphG is subdivided into two disjoint segments
A and B. For example, Fig. 10 shows the finding of the optimal value
for thresbin and the division of the histogram of y1 for the segments
in Fig. 9.
The subdivision of the G into several segments is found in the

following hierarchical procedure.
Step 1: Create the graph G by computingW and D for all nodes.
Step 2: Find the solution of the eigenvalue problem (7).
Step 3: Binarize the solution vector y1 with thresbin and cut the
graph G into two new graphs G1 and G2.
Step 4: Apply steps 2 and 3 to the graphsG1 andG2. Stop if the value
forNCut reaches or exceeds the thresholdNCut thres or if the number
of voxels is smaller than a certain minimal number of voxels.

3.3.2. Similarity function and combined segmentation
One crucial point is the finding of similaritymeasures reflecting

the likelihood that two voxels belong to one tree. In order to set up
the weighting matrixW we introduce the function

w(i, j) =
{
e−X(i,j) × e−Z(i,j) × e−F(i,j) × e−G(i,j) if (DXYij < rXY )
0 otherwise

(8)

with

X(i, j) =

(
DXYij
σxy

)2
, Z(i, j) =

(
DZij
σz

)2
,

F(i, j) =

(∣∣fi − fj∣∣
σf

)2
, G(i, j) =

(Gmaxij
σG

)2 (9)

that computes the similaritieswij between twovoxels i and jwithin
a cylinder of radius rXY around the voxel i. The key idea of function
(8) is to multiplicatively combine several factors impacting the
similarity.
The components X(i, j) and Z(i, j) are the basic modules and

weight the quadratic Euclidian distances between the voxels,
where DXYij is the horizontal and D

Z
ij the vertical distance. The

horizontal and vertical distances are weighted separately to take
into consideration the prior knowledge of a typical 3D tree shape.
The component F(i, j) describes the quadratic Euclidian dis-

tance between two arbitrary feature vectors fi and fj derived from
the data points (= reflections) in the voxels or in certain surround-
ings of the voxels. We use the features fi = {Imean,Wmean} for each
voxel iwhich are calculated from the N reflections in a given space
segment S of size 2 m× 2 m× 6 m as

Imean =
1
N

∑
j∈S

Ij Wmean =
1
N

∑
j∈S

Wj. (10)

The features in (10) represent the mean intensity and the mean
pulse width for each voxel. The computation in (10) is equivalent
to a low pass filtering of the raw reflections with a box filter.
voxel i

G
ij
max

X
stem

voxel j T

Fig. 11. The dependence of weighting of voxels i and j on their distance to XTstem .
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Fig. 12. Influence of σf on the values of e−F(i,j) .

Finally, the fraction G(i, j) renders it possible to introduce
prior knowledge about the stem position, e.g. from the watershed
segmentation or the stem detection. Two voxels are weighted
depending on their maximum horizontal distance Gmaxij to a known
stem position XTstem (Fig. 11). Hence, it is modelled that voxels
nearby XTstem belong most probably to one tree.
The parameters σxy, σz, σf and σG control the sensitivity of the

impact factors X(i, j), Z(i, j), F(i, j) and G(i, j) in the numerator of
Eq. (9). For example, Fig. 12 illustrates the change of e−F(i,j) for
different values of σf . The higher the values of σf are, the slower
is the loss of similarity for an increasing feature difference.
It is also noteworthy that the two latter terms in (8) are op-

tional and the approach works just having the coordinates of the
reflections. If additional features or results from other segmenta-
tion methods are available, this can be used advantageously.

3.3.3. Postprocessing of results
The results of normalized cut segmentation are cleaned in the

following steps. Firstly, segments with a number of voxels lower
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Table 1
Characteristics of sample plots.

Plot name 21 22 55 56 57 58 59 60 64 65 74 81 91 92 93 94 95 96
Age (a) 160 160 240 170 100 85 40 110 100 100 85 70 110 110 110 110 110 110
Size (ha) 0.20 0.20 0.15 0.23 0.10 0.10 0.10 0.10 0.12 0.12 0.30 0.30 0.36 0.25 0.28 0.29 0.25 0.30
Altitude (m) 860 885 610 640 765 710 810 890 835 875 720 690 764 767 766 768 750 781
N/ha 500 540 830 340 450 440 2150 380 430 810 700 610 260 170 240 250 240 200
N lower layer 37 19 77 31 0 10 76 8 13 53 11 29 31 13 7 15 6 30
N interm. layer 14 60 21 19 4 4 85 22 4 26 33 59 11 3 2 4 0 3
N upper layer 48 29 20 27 41 30 54 27 35 35 165 96 54 27 59 54 53 26
Deciduous (%) 66 79 5 10 0 14 1 100 87 96 29 100 75 100 66 97 10 86
than a certain threshold are cancelled. The threshold depends on
the height of the segment and is 30 for segments below 12 m
and 60 for segments higher than 12 m. Secondly, we subdivide
each segment into layers of height 2.0 m and search for layers
containing only empty voxels (= no reflections!) at an absolute
segment height of more then 10 m. All the voxels above the empty
layer are ignored.

3.3.4. Control parameters
Normalized cut segmentation is controlled by several param-

eters whose values have been optimized in a sensitivity analysis
(Section 4.4.2). Firstly, the size of the voxels vpwas set equal to 0.5
m. The threshold rXY defining themaximumhorizontal distance for
calculatingw(i, j)was set to 4.5 m. The most important parameter
NCut thres, which controls the subdivision (= cut) of a graph G, was
set equal to 0.16. Moreover, a graph G is not subdivided any more
if the number of voxels of the graph undershoots the limit of 40
voxels. We used the empirical values σxy = 1.35 m, σz = 11.0 m,
σf = 0.5 m and σG = 3.5 m to control the influence of the impact
factors X(i, j), Z(i, j), F(i, j) and G(i, j). The value for σz is larger
than σxy assuming that the tree height is larger than the tree crown
diameter.

4. Experiments

4.1. Field data

Experiments were conducted in the Bavarian Forest National
Park which is located in South-Eastern Germany along the border
with the Czech Republic (49◦ 3′ 19′′ N, 13◦ 12′ 9′′ E). There
are four major test sites of size between 591 ha and 954 ha
containing alpine spruce forests, mixed mountain forests and
spruce forests as the three major forest types. 18 sample plots
with an area size between 1000 m2 and 3600 m2 were selected
in themixedmountain forests dominated by Norway spruce (Picea
abies) and European beech (Fagus sylvatica). Some fir trees (Abies
alba), sycamore maples (Acer pseudoplatanus), Norway maples
(Acer platanoides) and lime trees (Tilia europaea) also occur in the
sample plots. The height above sea level varies between 610 m
and 890 m. Reference data for all trees with diameter at breast
height (DBH) larger than 10 cm were collected for 688 Norway
spruce, 812 European beech, 70 fir, 71 sycamoremaple, 21 Norway
maple and 2 lime trees. Several tree parameters like the DBH, total
tree height, stem position and tree species were measured and
determined with the help of GPS, tacheometry and the ’Vertex’
III system. Furthermore, the trees are subdivided into three layers
with respect to the top height htop of the plot, where htop is defined
as the average height of the 100 highest trees per ha (Heurich,
2006). The lower layer contains all trees below 50% of htop, the
intermediate layer refers to all trees between 50% and 80% of htop,
and finally, the upper layer contains the rest of the trees. Naturally,
the reference data were updated for the individual flying dates
of the LIDAR data. Table 1 summarizes the characteristics of the
individual sample plots. The reference trees are plotted in Figs. 3,
8, 16, 17 and 20–22 as black vertical lines.
Fig. 13. Calibration airfield with tracks (blue) and calibration areas (red). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

4.2. LIDAR data

LIDAR data of several ALS campaigns are available for the test
sites. First/last pulse data were recorded by TopoSys with the
Falcon II system. Full waveform data were collected by Milan
Flug GmbH using the Riegl LMS-Q560 scanner. Table 2 contains
details on the point density, leaf-on and leaf-off conditions during
the flights, the footprint size and the flying height above average
terrain (HAAT). The term point density refers to the nominal value
influenced by the pulse repetition frequency, flying height, flying
speed and strip overlap. These data sets allow the comparison
of conventional and full waveform systems, which were flown
in the same area. However, data set IV is only available for 12
reference plots, referred to as ‘Area E’. This has to be considered
when comparing results of other data sets with this data set.
Furthermore, a DTM with a grid size of 1 m and an absolute

accuracy of 25 cm was available for all the test sites. It was
generated from LIDAR data which had been acquired in 2003
(Heurich, 2006).

4.3. Calibration

The calibration of the Riegl full waveform system was
determined from special calibration flights performed over an
airfield. Several tracks were flown at different flying heights (200
m and 400 m) along and across the airfield (Fig. 13). The mean
intensity Ii, corrected with respect to the emitted intensity Ie, and
the mean run length si were calculated in four homogeneous areas
(122 m2–133 m2) for each track i. In order to reduce the impact
of the scan angle we only used measurements whose scan angles
were smaller than 10◦.
According to Eq. (2), the best coefficient k was estimated from

all possible observation equations

Ii · ski = Ij · s
k
j (11)
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Table 2
Different ALS campaigns.

Time of flight September 2002 May 2006 May 2007 May 2007

Data set I II III IV
Foliage Leaf-on Leaf-off Leaf-on Leaf-on
Scanner TopoSys Falcon II Riegl LMS-Q560 Riegl LMS-Q560 Riegl LMS-Q560
Pts/m2 10 25 25 10
HAAT (m) 850 400 400 500
Footprint (cm) 85 20 20 25
Reference plots All All All Area E
Table 3
Estimation of calibration parameter k.

Flight 2006 (data set II) Flight 2007 (data sets III and IV)

Calibrated
parameter k

1.902 1.736

a

b

c

Fig. 14. Watershed segments for (a) low, (b) intermediate and (c) high smoothing
of the CHM.
Table 4
Options of normalized cut segmentation.

Option Parameterization of weighting function

NCutC Coordinates
NCutCF Coordinates, Features
NCutCPm Coordinates, Position of maxima from CHM
NCutCPms Coordinates, Positions of maxima from CHM and stem detection
NCutCFPms Coordinates, Features, Positions of maxima from CHM and stem

detection

which can be formulated for two tracks i and j flown at different
heights. Table 3 shows the results obtained for the two flights of
data sets II, III and IV. It is remarkable that the mean values for
k are smaller than the value of 2. Thus, the attenuation of the
signal is smaller, as theoretically expected. One possible reason is a
non-linearity in the sensor system which amplifies low intensities
more than high intensities. However, no detailed information from
the hardware supplier is available on that subject. The calibrated
values for kwere used in the following analysis.

4.4. Segmentation

4.4.1. Procedure and evaluation
First, watershed segmentation was applied to all the reference

plots in a batch procedure without anymanual interaction. The re-
sults are the stem positions and heights (XCHMstem i, Y

CHM
stem i, Z

CHM
stem i) (i =

1, . . . ,Nseg) from the local maxima and the segment borders from
the watershed algorithm.
Second, stem detection was conducted for each of the

watershed segments. Depending on the number of detected stems
three cases are distinguished:
(1) No stem is found. The position and height (XCHMstem , Y

CHM
stem , Z

CHM
stem )

from the watershed segmentation remains unchanged.
(2) One stem is found. The position and height (XCHMstem , Y

CHM
stem , Z

CHM
stem )

are replaced by the more exact values (X StDetstem , Y
StDet
stem , Z

StDet
stem ).

(3) Several stems are found. The position and height (XCHMstem , Y
CHM
stem ,

ZCHMstem ) are replacedby (X
StDet
stem i, Y

StDet
stem i, Z

StDet
stem i) (i = 1, . . . ,NStDet).

Thus, additional tree positions are detected,whereas the crown
points belonging to the original segment are not separated
with respect to the detected stems.

Third, normalized cut segmentation was applied to all the
reference plots. As described, this segmentation method does not
only use voxel coordinates but also optionally features derived
from the intensity and pulse width. Furthermore, the results from
watershed segmentation and stem detection can be utilized. Thus
there are multiple possibilities to parameterize the weighting
function (8), which describes the similarity between the voxels.
Table 4 summarizes the options that were tested.
The accuracy and reliability of the presented methods are

evaluated in the following way. The tree positions from the
segmentation are compared with reference trees if (i) the distance
to the reference tree is smaller than 60% of the mean tree distance
within the plot and (ii) the height difference between htree and
the height of the reference tree is smaller than 15% of the top
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Fig. 15. Influence of smoothing factor λ on detection rate and false positives for (a) data set II and (b) data set III.
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Fig. 16. Tree segments resulting from an NCut value of 0.11. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

height htop of the plot. If a reference tree is assigned to more than
one tree position, the tree position with the shortest distance to
the reference tree is selected. Reference trees that are linked to
one tree position are so-called ‘detected trees’ and reference trees
without any link to a tree position are treated as ‘non-detected’
trees. Finally, a tree position without a link to a reference tree is
referred to as a ‘false positive’ tree.

4.4.2. Sensitivity analysis
Obviously, the proposed segmentation methods require proper

values for many control parameters. Tests were conducted to
find these values and to test their sensitivity. Concerning the 2D
segmentation this is exemplarily demonstrated for the smoothing
factor λ. Fig. 14 shows the segmentation results for one reference
plot using different values of λ.
The green polygons represent the watershed segments and the

yellow and blue dots show the reference positions of beeches and
spruces. Apparently, low smoothing leads to an oversegmentation
whereas high smoothingmerges neighbouring trees. The influence
of λ on the detection rate and the number of false positives for all
reference plots of data sets II and III is presented in Fig. 15.
The number of false positives significantly increases for values

of λ smaller than 4. Thus, the value 4 was chosen for the control
parameter λ.
As a further example we demonstrate the influence of the

NCut thres value that controls the subdivision of the segments in
step 4 of the normalized cut segmentation procedure. The larger
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Fig. 17. Tree segments resulting from an NCut value of 0.16. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 18. Influence of control parameter NCut thres on detection rate and false
positives.

the value is set the higher is the similarity between the resulting
segments. Figs. 16 and 17 show in an example how the value
0.16 splits the upper right (yellow) segment into two correct tree
segments.
Note that the higher the value of NCut thres is set the better is

the detection rate of single trees. However, this also leads normally
to a larger number of false positives. This is nicely depicted in
Fig. 18, where the sensitivity of the segmentation process in terms
of correctly found trees and false positives is shown by using
the LIDAR data set II. The value of 0.16 was found as the best
compromise and – more importantly – was robust for all the
reference areas. Tests with the other data sets also showed that a
value around 0.16 is optimal.
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Table 5
Results of segmentation methods with data set II (high density full waveform data,
leaf-off).

Method Detected trees per height layer (%) False positives (%)
Lower Intermediate Upper Total

W 5 21 77 48 4
W + S 7 27 82 52 5
NCutC 18 32 77 53 6
NCutCF 19 35 77 54 6
NCutCPm 20 36 83 57 9
NCutCPms 20 37 86 59 9
NCutCFPms 21 38 87 60 9

Table 6
Accuracy of the tree position without and with stem detection for data set II (high
density full waveform data, leaf-off).

W (m) W + S (m)

Mean positioning error, coniferous 0.83 0.68
Mean positioning error, deciduous 1.49 1.12
Total mean positioning error 1.17 0.91

4.4.3. Results of segmentation methods

4.4.3.1. Benefit of stem detection and normalized cut segmentation.
In the first instance, we compare the results of the different
segmentation methods and options achieved with data set II
(Table 5).
The watershed-based segmentation (W ) leads to an overall

detection rate of about 48%. As expected, the detection rate is
rather poor in the lower forest layer since most of these trees
are covered by taller trees. A combination of the watershed
segmentation and the stem detection (W + S) works successfully
in the intermediate and upper layers and improves the overall
detection rate by 4%. However, the improvement achieved in the
lower layer is low since (i) laser hits at the stems of small trees
happen rarely, (ii) the crown base height hbase is inaccurate for
trees beneath taller trees, and (iii) smaller trees in particular often
have an hbase which is close to the ground. The improved overall
detection rate is only one advantage of the stem detectionmethod.
A further advantage is the higher positional accuracy of the tree
locations (X StDetstem , Y

StDet
stem ), which is in particular useful when the

stem positions are used as prior knowledge for normalized cut
segmentation. Table 6 shows themean positioning errors with and
without stem detection for all sample plots.
The mean positioning error of coniferous trees gets better

by 18%, which corresponds to 15 cm. The improvement for the
deciduous trees is higher: 25% (=37 cm). All in all, the overall
improvement of the tree positions amounts to 22% (=26 cm).
3D segmentation (NCut) generally increases the detection rate

considerably in the lower and intermediate layers, in the range
11%–17% for all options. The detection rate in the upper layer does
not improve if only voxel coordinates and features are used as
similarity measures. If the tree positions – calculated from the
local maxima of the CHM and by stem detection – are used, the
detection rate in the upper and intermediate layers is significantly
improved, by up to 10%. If features are used, the gain is small
(by 1%) but always significant. In summary, 3D segmentation and
stem detection increase the overall detection rate by 12%. Most
interestingly, the improvement is more evident in the lower and
intermediate levels: it is about 16%. This is remarkable, and shows
that the new 3D segmentation technique can successfully detect
smaller trees below the CHM. The high spatial point density of
the full waveform data, which practically contain all relevant
reflections of the laser beam, turns out to be the key factor for
segmenting in three dimensions not only the dominant trees but
also the dominated smaller trees in the lower and intermediate
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Fig. 19. Comparison of detected trees and reference trees for different stem
diameters using data set II.
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Fig. 20. Two examples where several small trees are merged into one segment
(blue). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

layers. Fig. 19 illustrates the improvement of the detection rate
graphically, but also shows that there are still many undetected
smaller trees.
Possible reasons, therefore, are shown in Fig. 20, where several

smaller trees are merged into one segment. These trees remain
statistically undetected since the positions and heights of the
segmented trees do not correspondwith the reference treeswithin
the assumed error tolerances. However, as the Fig. 20 clearly
shows, the 3D structure of the forest area is fully captured and
separated into dominant trees and the group of small trees of the
understorey. Thus, the segments of dominant trees are mostly not
affected by trees from the understorey. Subsequent analyses of
timber volume will be more precise than they would be with 2D
segments calculated from the watershed segmentation method.
Another important aspect is that the increased detection rate

of normalized cut segmentation reduces the reliability of the
segmentation process by a factor of 2 in terms of false positives.
The reasons for false tree segments are manifold. The left plot in
Fig. 21 shows that the segmentation wrongly assigns branches of
the tall tree to the smaller tree beneath this tree. Thus, the smaller
segment is completely inaccurate and the segment of the tall tree
is falsified. The right plot shows two broad trees whose crowns
are partly merged into a third segment for which a reference tree
does not exist. An increase of the control parameter σxy solves
this problem. However, the drawback of this parameter change is
that smaller trees are merged into one tree, hence increasing the
number of non-detected trees considerably for all reference plots.
Thus, a change of σxy is commonly not reasonable.
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Table 7
Results of segmentationmethods with data set III (high density full waveform data,
leaf-on).

Method Detected trees per height layer (%) False positives (%)
Lower Intermediate Upper Total

W 5 20 79 48 4
W + S 6 27 83 52 6
NCutC 13 29 73 49 7
NCutCF 16 29 73 50 7
NCutCPm 15 29 82 54 9
NCutCPms 15 31 86 57 10
NCutCFPms 17 32 86 58 10

Table 8
Results of segmentationmethods with data set III (high density full waveform data,
leaf-on) by evaluating only area E.

Method Detected trees per height layer (%) False positives (%)
Lower Intermediate Upper Total

W 5 20 82 55 5
W + S 6 29 87 60 7
NCutCFPms 24 35 88 66 11

Table 9
Results of segmentation methods with data set IV (low density full waveform data,
leaf-on, only area E).

Method Detected trees per height layer (%) False positives (%)
Lower Intermediate Upper Total

W 6 21 84 57 6
W + S 7 22 86 58 7
NCutCFPms 26 33 87 65 11

4.4.3.2. Leaf-on versus leaf-off. The results given in Table 5 for
leaf-off conditions can also be compared with full waveform data
captured in the same area and with the same point density in
leaf-on condition (data set III). Table 7 shows that watershed
segmentation and stem detection do not change in all layers, both
in detection rate and in reliability. Apparently, the reconstructed
surface of the CHM is identical in both foliage conditions, and the
crown shape of deciduous trees is well represented even in a leaf-
off situation. As expected, the detection rate deteriorates in the
case of normalized cut segmentation in the lower and intermediate
layer by roughly 5% due to the reduced penetration rate of the
laser beam, which in turn causes a worse spatial distribution of the
reflections. Finally, the number of false positives does not change
significantly for normalized cut segmentation.

4.4.3.3. Impact of point density. If we restrict data set III to area
E and compare it with data set IV, the impact of the nominal
Table 10
Results of segmentation methods with data set I (first/last pulse data, leaf-on) by
evaluating only area E.

Method Detected trees per height layer (%) False positives (%)
Lower Intermediate Upper Total

W 2 12 80 52 5
W + S 3 13 80 52 6
NCutCPms 15 27 77 55 13

point density on the segmentationmethods can be shown. Tables 8
and 9 demonstrate that the detection rate and false positives are
practically the same for both point densities. Obviously, although
the number of penetrating laser beams is significantly reduced, the
most relevant tree structures are still detected by reflections.

4.4.3.4. First/last pulse versus full waveform. Finally, we compare
the segmentation methods with respect to conventional first/last
pulse data (data set I; Table 10) and full waveform data that have
the same nominal point density (data set IV; Table 9). The foliage
condition is leaf-on in both cases.
The total detection rate of the 2D watershed-based segmenta-

tion is better by 5% for the full waveform data. The number of false
positives is basically the same. The main reason for this is that
the full waveform data represent the tree shape more precisely
since the waveform decomposition basically detects each reflec-
tion, even weak reflections and reflections resulting from adjacent
targets. This leads to an effective point density, which is higher by
a factor of 2–3 compared to first/last pulse data.
In contrast, first/last pulse systems ignore most of these

reflections due to the inherent detectionmethod and the dead zone
after the first reflection, which amounts at least to one complete
pulse duration (e.g. 1.5 m for the TopoSys Falcon II system). For
example, Fig. 22a and b show two neighbouring spruce trees
captured both with first/last pulse data and with full waveform
data.
In Fig. 23b, a typical waveform is depicted that results from two

adjacent targets (black points in Fig. 23a) with a distance of 1 m.
Obviously, the tree shape is better detected by the full waveform
data.
If we focus on normalized cut segmentation in Tables 9 and

10, the benefit of full waveform data becomes clearer. The total
detection rate amounts to 65%, which is 10% better than with
first/last pulse data. What is remarkable is the fact that normalized
cut segmentation increases the detection rate in the lower
and intermediate layers even for the first/last pulse data. Most
importantly, the combination of full waveform with normalized
cut segmentation is by more than 20% better than a conventional
2D segmentation using first/last pulse data.
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Fig. 22. Neighbouring spruces captured (a) with first/last pulse data and (b) with
full waveform data.

5. Discussion

This paper addresses three methods for single tree detection
from airborne LIDAR data. The results of the watershed segmen-
tation are similar to the results of Heurich (2006) for the first/last
pulse data of data set I. This comparison proves that our 2D seg-
mentation approach is on a par with the approach of Persson et al.
(2002). The presented approach of detecting tree stems goes one
step further than existing methods by using additional informa-
tion inside the tree. It leads to an improvement of the detection
rate of single trees in the intermediate and upper forest layer. This
refinement of the detection rate could be expected since (i) inmany
cases neighbouring trees do not appear as two clear maxima in the
raw data and (ii) the smoothing of the CHM blurs the maxima. The
second advantage of this method is that the position of detected
trees is significantly improved. This is also not very surprising since
the intersection of the detected tree stem with the DTM must be
more precise than the tree position derived from the CHM max-
imum. Thirdly, the stem detection checks the hypothesis of stem
positions which have been derived from the CHM. The restrictions
of the approach are that only trees in the upper and intermediate
forest layer can be additionally detected. It fails in the lower layer
where stem hits are rare and stems points cannot be clearly clus-
tered. Also, the tree height still depends on the highest point found
in the raw data contained in the stem cylinder Vstem. Thus, in cases
where the tree belonging to the detected stem is covered by a taller
tree and the gap between the trees is small, the derived tree height
htree can be erroneous. Stem detection is not a real segmentation
method because the crown points are not assigned to the stems,
but the results can be used advantageously by normalized cut seg-
mentation.
Normalized cut segmentation represents substantial progress

in the single tree approach and constitutes a natural hierarchical
segmentation based on an energy minimization. Thereby, a global
minimum is approximated. The 3D segments allow a direct
computation of the crown volume and, hence, the timber volume
is expected to be estimatedmore precisely. In comparison to other
methods that tackle tree segmentation in three dimensions it is
important to mention that normalized cut segmentation needs no
seed points for initialization and works fully in three dimensions.
For instance, Morsdorf et al. (2003) use the local maxima of the
CHM to initialize a k-means 3D clustering of LIDAR data points. The
approach from Wang et al. (2008) firstly splits the tree area into
layers and finally connects the 2D tree crowns of each layer to a 3D
tree model. Apparently, the tree extraction depends on the correct
finding of proper tree tops. The mathematical formulation makes
the approach presented very flexible in using various information
derived from LIDAR data. At the moment, the information used is
split up into a geometrical part, a feature-based part and a part
which uses prior knowledge about probable stem positions. Note
that only the geometrical part is mandatory. Thus, our approach
also works basically with conventional first/last pulse data and is
not dependent on full waveform data or the stem positions. Also,
the list of features can be extended arbitrarily.
In general, the experiments with the different data sets

show that a combination of normalized cut segmentation with
watershed segmentation and stem detection methods always
provides the best results. A comparison of the different foliage
conditions demonstrates a higher detection rate for the leaf-off
data setmainly in the lower and intermediate layers because of the
higher penetration of the deciduous trees in the leaf-off situation.
Thus, the leaf-off situation seems to be themore appropriate flying
time to segment trees in three dimensions, at least for mixed
mountain forests that are scanned with a high point density. Note
that the leaf-off condition is also advantageous for deriving a DTM
and for classifying coniferous anddeciduous trees (Reitberger et al.,
2008).
The experiments show that a nominal point density higher

than 10 pts/m2 does not improve the detection rate considerably.
However, it remains to be seen whether a higher density would
be advantageous for estimating other parameters, such as timber
volume. In general, the use of full waveform data is clearly
superior to the use of first/last pulse data. All segmentation
approaches shown in this paper work better with full waveform
data. Most notably, only normalized cut segmentation can take
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Fig. 23. (a) Detailed view on crown points of Fig. 22b and (b) waveform of the two marked points.
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advantage of the high spatial point density that the full waveform
technique provides. In summary, the significant improvement
of the detection rate – especially apparent in the lower and
intermediate layers – is influenced both by the full waveform data
and the new normalized cut segmentation.
Finally, further improvements are possible by a sophisticated

post-processing of the segmentation results using a priori knowl-
edge about trees. For example, segments could not be accepted if
their size exceeds tolerances about the tree shape. Also, segments
could be tested with respect to closeness. Although the new 3D
segmentation is not capable of separating all single trees in the
lower layer, it provides at least important information about such
forest structures that can be used for further statistical analysis
and, hence, can reduce costly calibrationprocedures.Moreover, the
entire segmentation approach could be organized in a hierarchical
way. For example, if the segmented tree geometry does not appear
to be feasible the NCut parameter can be changed appropriately in
order to adapt to a reasonable tree geometry.

6. Conclusions

We have shown in this paper how several segmentation
methods work with conventional first/last pulse data and full
waveform data. The combination of a new normalized cut
segmentation with the tree positions derived from a watershed
segmentation method or a stem detection method leads to a
significant improvement in the detection rate, especially in the
case of full waveform data. In order to make further progress, the
behaviour of the laser beam in the tree structure must be analysed
in more detail. A better understanding of the correlation between
the tree structure and its representation in the LIDAR data might
help to identify salient features, which are useful for segmentation
and tree species classification purposes. A comparison of airborne
and densely captured terrestrial LIDAR data may be helpful in this
context.
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